Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "./DogData.sol";
import "erc721a/contracts/ERC721A.sol";
import "base64-sol/base64.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
contract DogTest is ERC721A, Ownable, DogData, ReentrancyGuard {
address public deployer;
bytes32 private lastBlockHash;
uint256 private lastBlockNumber;
/// Mint Settings
uint public maxSupply = 2500;
uint public mintPrice = 0.003 ether;
bool public mintEnabled = false;
/// Mint Rules
uint public maxMintPerTrans = 100;
uint public maxMintPerWallet = 100;
/// Whitelist Settings
mapping(address => uint) public mintAmount;
mapping(address => bool) public whiteListed;
/// Whitelist setup
address public listController;
modifier onlylistController() {
require(msg.sender == listController, "Controller Only");
_;
}
constructor()
ERC721A("Pocket Dogs", "POKEDOGS")
{
lastBlockHash = blockhash(block.number - 1);
lastBlockNumber = block.number;
_transferOwnership(msg.sender);
}
function _startTokenId() internal pure override returns (uint256) {
return 1;
}
function mint(uint256 quantity) external payable {
uint256 cost = mintPrice;
require(mintEnabled, "Mint not ready yet");
require(msg.value == quantity * cost, "Please send the exact ETH amount");
require(quantity <= maxMintPerTrans, "Exceeds max mint per transaction");
// Check if the mint quantity exceeds the per wallet limit
uint256 totalMintedByWallet = mintAmount[msg.sender] + quantity;
require(totalMintedByWallet <= maxMintPerWallet, "Exceeds max mint per wallet");
mintAmount[msg.sender] = mintAmount[msg.sender] + totalMintedByWallet;
// Start minting
_internalMint(quantity);
}
function _internalMint(uint256 quantity) internal {
require(_totalMinted() + quantity <= maxSupply, "Sold Out!");
// What token do we start minting with?
uint startTokenID = _startTokenId() + _totalMinted();
uint mintUntilTokenID = quantity + startTokenID;
for(uint256 tokenId = startTokenID; tokenId < mintUntilTokenID; tokenId++) {
/// got get our random traits
uint[6] memory randomSeeds = _randomSeed(lastBlockHash,tokenId);
/// set this new Dog traits!
_setDogTraits(tokenId, randomSeeds);
}
lastBlockHash = blockhash(block.number - 1);
lastBlockNumber = block.number;
_safeMint(msg.sender, quantity);
}
function _randomSeed(bytes32 _lastBlockHash, uint256 _tokenId) internal pure returns (uint[6] memory _randomSeeds) {
// Initial seed
_randomSeeds[0] = uint256(keccak256(abi.encodePacked(_lastBlockHash, _tokenId))) % 101;
// Generate subsequent seeds
for (uint i = 1; i < 6; i++) {
_randomSeeds[i] = uint256(keccak256(abi.encodePacked(_randomSeeds[i - 1], _tokenId))) % 101;
}
return _randomSeeds;
}
function _setDogTraits(uint _tokenID, uint[6] memory _randomSeeds) internal {
// Randomly select traits
uint randFur = _pickTraitByProbability(_randomSeeds[0], fur_data, fur_probability);
uint randEyes = _pickTraitByProbability(_randomSeeds[1], eyes_data, eyes_probability);
uint randHead = _pickTraitByProbability(_randomSeeds[2], head_data, head_probability);
uint randMouth = _pickTraitByProbability(_randomSeeds[3], mouth_data, mouth_probability);
uint randMark = _pickTraitByProbability(_randomSeeds[4], mark_data, mark_probability);
uint randBoard = _pickTraitByProbability(_randomSeeds[5], board_data, board_probability);
TraitStruct memory newTraits = TraitStruct({
fur: randFur,
eyes: randEyes,
head: randHead,
mouth: randMouth,
mark: randMark,
board: randBoard
});
// Assign the generated traits to the token
tokenTraits[_tokenID] = newTraits;
}
function _pickTraitByProbability(uint seed, bytes[] memory traitArray, uint[] memory traitProbability) internal pure returns (uint) {
require(traitArray.length > 0, "Elements array is empty");
require(traitArray.length == traitProbability.length, "Elements and weights length mismatch");
for (uint i = 0; i < traitProbability.length; i++) {
if(seed < traitProbability[i]) {
return i;
}
}
// Fallback, return first element as a safe default
return 0;
}
function tokenURI(uint256 tokenId) public view override returns (string memory) {
// Get image
string memory image = buildSVG(tokenId);
// Encode SVG data to base64
string memory base64Image = Base64.encode(bytes(image));
// Build JSON metadata
string memory json = string(
abi.encodePacked(
'{"name": "Pocket Dogs #', Strings.toString(tokenId), '",',
'"description": "Fully Onchain Pocket Dogs on Abstract Chain",',
'"attributes": [', _getDogTraits(tokenId), '],',
'"image": "data:image/svg+xml;base64,', base64Image, '"}'
)
);
// Encode JSON data to base64
string memory base64Json = Base64.encode(bytes(json));
// Construct final URI
return string(abi.encodePacked('data:application/json;base64,', base64Json));
}
function buildSVG(uint tokenid) public view returns (string memory) {
require(_exists(tokenid), "Token does not exist");
TraitStruct memory localTraits = tokenTraits[tokenid];
string memory svg = string(abi.encodePacked(
'<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16" shape-rendering="crispEdges" width="512" height="512">',
'<rect width="16" height="16" fill="#01CA6A"/>',
_getSVGTraitData(fur_data[localTraits.fur]),
_getSVGTraitData(eyes_data[localTraits.eyes]),
_getSVGTraitData(head_data[localTraits.head]),
_getSVGTraitData(mouth_data[localTraits.mouth]),
_getSVGTraitData(mark_data[localTraits.mark]),
_getSVGTraitData(board_data[localTraits.board]),
'</svg>'
));
return svg;
}
function _getSVGTraitData(bytes memory data) internal pure returns (string memory) {
require(data.length % 5 == 0, "Invalid number of reacts");
/// if empty this is a transparent react
if (data.length == 0) {
return "<rect x=\"0\" y=\"0\" width=\"0\" height=\"0\" fill=\"rgb(0,0,0)\"/>";
}
// Initialize arrays to store values
uint reactCount = data.length / 5;
/// react string to return
string memory rects;
uint[] memory x = new uint[](reactCount);
uint[] memory y = new uint[](reactCount);
uint[] memory r = new uint[](reactCount);
uint[] memory g = new uint[](reactCount);
uint[] memory b = new uint[](reactCount);
// Iterate through each react and get the values we need
for (uint i = 0; i < reactCount; i++) {
// Convert and assign values to respective arrays
x[i] = uint8(data[i * 5]);
y[i] = uint8(data[i * 5 + 1]);
r[i] = uint8(data[i * 5 + 2]);
g[i] = uint8(data[i * 5 + 3]);
b[i] = uint8(data[i * 5 + 4]);
// Convert uint values to strings
string memory xStr = Strings.toString(x[i]);
string memory yStr = Strings.toString(y[i]);
string memory rStr = Strings.toString(r[i]);
string memory gStr = Strings.toString(g[i]);
string memory bStr = Strings.toString(b[i]);
rects = string(abi.encodePacked(rects, '<rect x="', xStr, '" y="', yStr, '" width="1" height="1" fill="rgb(', rStr, ',', gStr, ',', bStr, ')" />'));
}
return rects;
}
function _getDogTraits(uint tokenid) internal view returns (string memory) {
TraitStruct memory traits = tokenTraits[tokenid];
string memory metadata = string(abi.encodePacked(
'{"trait_type":"Fur", "value":"', fur_traits[traits.fur], '"},',
'{"trait_type":"Eyes", "value":"', eyes_traits[traits.eyes], '"},',
'{"trait_type":"Head", "value":"', head_traits[traits.head], '"},',
'{"trait_type":"Mouth", "value":"', mouth_traits[traits.mouth], '"},',
'{"trait_type":"Mark", "value":"', mark_traits[traits.mark], '"},',
'{"trait_type":"Board", "value":"', board_traits[traits.board], '"}'
));
return metadata;
}
//// Admin methods
function toggleMinting() external onlyOwner {
mintEnabled = !mintEnabled;
}
function devMint(uint _quantity) external onlyOwner {
_internalMint(_quantity);
}
function addToWhiteList(address[] calldata addresses) external onlylistController nonReentrant {
for (uint i = 0; i < addresses.length; i++) {
whiteListed[addresses[i]] = true;
}
}
function changelistController(address _address) external onlyOwner {
listController = _address;
}
function withdraw() external onlyOwner nonReentrant {
(bool success, ) = msg.sender.call{value: address(this).balance}("");
require(success, "Transfer failed.");
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
contract DogData {
struct TraitStruct {
uint fur;
uint eyes;
uint head;
uint mouth;
uint mark;
uint board;
}
mapping(uint => TraitStruct) public tokenTraits;
mapping(uint => uint) public CowBarn;
bytes[] internal fur_data = [
bytes(hex'0805df71260706df71260906df71260a06df71260b06df71260207df71260807df71260907ffffff0a07df71260b07ffffff0308df71260808df71260908df71260a08df71260b088843140c088843140409df71260509df71260609df71260709df71260809df71260909df71260a09df71260b09df7126040adf7126050adf7126060adf7126070adf7126080adf7126090adf71260a0adf71260b0adf7126040bdf7126050bdf7126060bdf7126070bdf7126080bdf7126090bdf71260a0bdf71260b0bdf7126040cdf7126060cdf7126090cdf71260b0cdf7126'),
bytes(hex'0805a0bdfa0706a0bdfa0906a0bdfa0a06a0bdfa0b06a0bdfa0207a0bdfa0807a0bdfa0907ffffff0a07a0bdfa0b07ffffff0308a0bdfa0808a0bdfa0908a0bdfa0a08a0bdfa0b08759ff70c08759ff70409a0bdfa0509a0bdfa0609a0bdfa0709a0bdfa0809a0bdfa0909a0bdfa0a09a0bdfa0b09a0bdfa040aa0bdfa050aa0bdfa060aa0bdfa070aa0bdfa080aa0bdfa090aa0bdfa0a0aa0bdfa0b0aa0bdfa040ba0bdfa050ba0bdfa060ba0bdfa070ba0bdfa080ba0bdfa090ba0bdfa0a0ba0bdfa0b0ba0bdfa040ca0bdfa060ca0bdfa090ca0bdfa0b0ca0bdfa'),
bytes(hex'0805d77bba0706d77bba0906d77bba0a06d77bba0b06d77bba0207d77bba0807d77bba0907ffffff0a07d77bba0b07ffffff0308d77bba0808d77bba0908d77bba0a08d77bba0b08c7479f0c08c7479f0409d77bba0509d77bba0609d77bba0709d77bba0809d77bba0909d77bba0a09d77bba0b09d77bba040ad77bba050ad77bba060ad77bba070ad77bba080ad77bba090ad77bba0a0ad77bba0b0ad77bba040bd77bba050bd77bba060bd77bba070bd77bba080bd77bba090bd77bba0a0bd77bba0b0bd77bba040cd77bba060cd77bba090cd77bba0b0cd77bba'),
bytes(hex'08055fcde407065fcde409065fcde40a065fcde40b065fcde402075fcde408075fcde40907ffffff0a075fcde40b07ffffff03085fcde408085fcde409085fcde40a085fcde40b081c8ea60c081c8ea604095fcde405095fcde406095fcde407095fcde408095fcde409095fcde40a095fcde40b095fcde4040a5fcde4050a5fcde4060a5fcde4070a5fcde4080a5fcde4090a5fcde40a0a5fcde40b0a5fcde4040b5fcde4050b5fcde4060b5fcde4070b5fcde4080b5fcde4090b5fcde40a0b5fcde40b0b5fcde4040c5fcde4060c5fcde4090c5fcde40b0c5fcde4'),
bytes(hex'0805eec39a0706eec39a0906eec39a0a06eec39a0b06eec39a0207eec39a0807eec39a0907ffffff0a07eec39a0b07ffffff0308eec39a0808eec39a0908eec39a0a08eec39a0b08d9a0660c08d9a0660409eec39a0509eec39a0609eec39a0709eec39a0809eec39a0909eec39a0a09eec39a0b09eec39a040aeec39a050aeec39a060aeec39a070aeec39a080aeec39a090aeec39a0a0aeec39a0b0aeec39a040beec39a050beec39a060beec39a070beec39a080beec39a090beec39a0a0beec39a0b0beec39a040ceec39a060ceec39a090ceec39a0b0ceec39a'),
bytes(hex'0805222034070622203409062220340a062220340b06222034020722203408072220340a072220340308222034080822203409082220340a082220340b081816210c081816210409222034050922203406092220340709222034080922203409092220340a092220340b09222034040a222034050a222034060a222034070a222034080a222034090a2220340a0a2220340b0a222034040b222034050b222034060b222034070b222034080b222034090b2220340a0b2220340b0b222034040c222034060c222034090c2220340b0c222034'),
bytes(hex'08053f3f7407063f3f7409063f3f740a063f3f740b063f3f7402073f3f7408073f3f740907ffffff0a073f3f740b07ffffff03083f3f7408083f3f7409083f3f740a083f3f740b08282f670c08282f6704093f3f7405093f3f7406093f3f7407093f3f7408093f3f7409093f3f740a093f3f740b093f3f74040a3f3f74050a3f3f74060a3f3f74070a3f3f74080a3f3f74090a3f3f740a0a3f3f740b0a3f3f74040b3f3f74050b3f3f74060b3f3f74070b3f3f74080b3f3f74090b3f3f740a0b3f3f740b0b3f3f74040c3f3f74060c3f3f74090c3f3f740b0c3f3f74'),
bytes(hex'0805fbf2360706fbf2360906fbf2360a06fbf2360b06fbf2360207fbf2360807fbf2360907ffffff0a07fbf2360b07ffffff0308fbf2360808fbf2360908fbf2360a08fbf2360b08b3ab040c08b3ab040409fbf2360509fbf2360609fbf2360709fbf2360809fbf2360909fbf2360a09fbf2360b09fbf236040afbf236050afbf236060afbf236070afbf236080afbf236090afbf2360a0afbf2360b0afbf236040bfbf236050bfbf236060bfbf236070bfbf236080bfbf236090bfbf2360a0bfbf2360b0bfbf236040cfbf236060cfbf236090cfbf2360b0cfbf236')
];
string[] internal fur_traits = [
'Autumn',
'Blue',
'Bubblegum',
'Cottoncandy',
'Cream',
'Dark',
'Night',
'Yellow'
];
uint[] internal fur_probability = [15,30,48,58,64,80,90,100];
bytes[] internal eyes_data = [
bytes(hex'09070000000b07000000'),
bytes(hex'0907ff00000a07ff00000b07ff00000c07ff00000d07ff00000e07ff0000'),
bytes(hex'0906ffffff0a06ffffff0b06ffffff0807ffffff09070000000a07ffffff0b070000000908ffffff0a08ffffff'),
bytes(hex'09060000000a060000000b0600000008070000000907ffffff0a070000000b07ffffff09080000000a08000000'),
bytes(hex'09060000000a060000000b060000000807000000090768ff000a0768ff000b0768ff0009080000000a08000000'),
bytes(hex'0906fbf2360b06fbf2360807fbf2360907ffffff0a07fbf2360b07ffffff0c07fbf2360908fbf236'),
bytes(hex'09069badb70a069badb70b069badb708079badb709070000000a070000000b0700000009089badb70a089badb7'),
bytes(hex'0907ffffff0b07ffffff')
];
string[] internal eyes_traits = [
'Black',
'LAZEEERRRR',
'Mask White',
'Mask Black',
'NV Googles',
'Sparkling',
'VR',
'White'
];
uint[] internal eyes_probability = [20, 30, 45, 60, 70, 80, 90, 100];
bytes[] internal head_data = [
bytes(hex'0a03fff3000904fff3000a04ff00000b04fff30009050037ff0a050037ff0b050037ff'),
bytes(hex'0805196cff0905196cff0a05196cff0b05196cff0806196cff0906196cff0a06196cff0b06196cff0c06196cff'),
bytes(hex'0903c9c9c90a03c9c9c90b03c9c9c90904ffffff0a04ffffff0b04ffffff0905ffffff0a05ffffff0b05ffffff'),
bytes(hex'0904ffe1f60a04ffe1f60b04ffe1f60805ff5a5a0905ffccef0a05ffccef0b05ffccef0c05ff5a5a'),
bytes(hex'0804f5ec230a04f5ec230c04f5ec230805f5ec230905f5ec230a05f5ec230b05f5ec230c05f5ec23'),
bytes(hex'0804ac32320c04ac32320905ac32320b05ac3232'),
bytes(hex'0704d9a0660904df71260a04df71260b04df71260d04d9a0660805d9a0660905d9a0660a05d9a0660b05d9a0660c05d9a066'),
bytes(hex'0904aa70540a04aa70540b04aa705408058f563b09058f563b0a058f563b0b058f563b0c058f563b'),
bytes(hex'0902fbf2360a02fbf2360b02fbf2360803fbf2360c03fbf2360904fbf2360a04fbf2360b04fbf236'),
bytes(hex'0a03fff74e0b03fff74e0904fff74e0a04fff74e0b04fff74e0805fff74e0905fff74e0a05fff74e0b05fff74e'),
bytes(hex'0a03ff00000b03ff00000904ff00000a04ff00000b04ff00000805ff00000905ff00000a05ff00000b05ff0000'),
bytes(hex''),
bytes(hex'0903ffffff0a03ffffff0b03ffffff0904c9c9c90a04c9c9c90b04c9c9c90805ffffff0905ffffff0a05ffffff0b05ffffff0c05ffffff'),
bytes(hex'09040000000a040000000b040000000905f219190a05f219190b05f21919080600000009060000000a060000000b060000000c06000000')
];
string[] internal head_traits = [
'Beanie Cap',
'Blue Cap',
'Chef hat',
'Cotton hat',
'Crown',
'Devil horns',
'Farmer hat',
'Fedora',
'Halo',
'Mohawk Golden',
'Mohawk Red',
'None',
'Top hat white',
'Top hat black'
];
uint[] internal head_probability = [10,20,30,40,45,50,60,66,70,75,78,90,95,100];
bytes[] internal mouth_data = [
bytes(hex'0a09f4f4f40b09f4f4f40c09f4f4f40d09f4f4f4'),
bytes(hex'0e06ffffff0e07ffffff0b09f4f4f40c09f4f4f40d09f4f4f40e09ff0000'),
bytes(hex'0e08fffcb30a09fbf2360b09fbf2360c09fbf2360e0afffcb30d0cfffcb3'),
bytes(hex'0a094b692f0b09524b240c094b692f0d094b692f0e09ffffff0a0a524b240b0a4b692f0c0a524b24'),
bytes(hex''),
bytes(hex'0a09ffffff0b09ffffff0c09ffffff0d09ffffff0a0affffff0d0affffff'),
bytes(hex'0e05ffffff0e07ffffff0b09c3dfff0c09c3dfff0d09c3dfff0e09003dff')
];
string[] internal mouth_traits = [
'Bone',
'Cig',
'Gold bar',
'Grenade',
'None',
'Sabertooth',
'Vape'
];
uint[] internal mouth_probability = [10,20,30,40, 80,90, 100];
bytes[] internal mark_data = [
bytes(hex'090affffff'),
bytes(hex'090affffff070bf4f4f4'),
bytes(hex'050973eff7060973eff7070b73eff7080b73eff7'),
bytes(hex'040ac7b6b6050ac7b6b6060ac7b6b6070ac7b6b6080ac7b6b6090ac7b6b60a0ac7b6b60b0ac7b6b6'),
bytes(hex''),
bytes(hex'05094447460809444746060a444746090a444746070b4447460a0b444746'),
bytes(hex'080afb3838090afb3838070bfb3838')
];
string[] internal mark_traits = [
'DOT 1',
'DOT 2',
'Highlight',
'Line',
'None',
'Stripes',
'Scar'
];
uint[] internal mark_probability = [10, 20, 30, 40, 80, 90, 100];
bytes[] internal board_data = [
bytes(hex'020b272820020c272820030d272820040d272820050d272820060d272820070d272820080d272820090d2728200a0d2728200b0d2728200c0d272820060efff8c3070efff8c3080efff8c3090efff8c3'),
bytes(hex'020bae81ff020cae81ff030dae81ff040dae81ff050dae81ff060dae81ff070dae81ff080dae81ff090dae81ff0a0dae81ff0b0dae81ff0c0dae81ff060efff8c3070efff8c3080efff8c3090efff8c3'),
bytes(hex'020b66d9ef020c66d9ef030d66d9ef040d66d9ef050d66d9ef060d66d9ef070d66d9ef080d66d9ef090d66d9ef0a0d66d9ef0b0d66d9ef0c0d66d9ef060efff8c3070efff8c3080efff8c3090efff8c3'),
bytes(hex'020be6db74020ce6db74030de6db74040de6db74050de6db74060de6db74070de6db74080de6db74090de6db740a0de6db740b0de6db740c0de6db74060efff8c3070efff8c3080efff8c3090efff8c3'),
bytes(hex''),
bytes(hex'020c823e2c0d0c823e2c030d823e2c040d823e2c050d823e2c060d823e2c070d823e2c080d823e2c090d823e2c0a0d823e2c0b0d823e2c0c0d823e2c050e16171a060e16171a090e16171a0a0e16171a'),
bytes(hex'020c1008200d0c100820030d100820040d100820050d100820060d100820070d100820080d100820090d1008200a0d1008200b0d1008200c0d100820050e16171a060e16171a090e16171a0a0e16171a'),
bytes(hex'020c10d2750d0c10d275030d10d275040d10d275050d10d275060d10d275070d10d275080d10d275090d10d2750a0d10d2750b0d10d2750c0d10d275050e16171a060e16171a090e16171a0a0e16171a'),
bytes(hex'020c7f06220d0c7f0622030d7f0622040d7f0622050d7f0622060d7f0622070d7f0622080d7f0622090d7f06220a0d7f06220b0d7f06220c0d7f0622050e16171a060e16171a090e16171a0a0e16171a'),
bytes(hex'020cfafdff0d0cfafdff030dfafdff040dfafdff050dfafdff060dfafdff070dfafdff080dfafdff090dfafdff0a0dfafdff0b0dfafdff0c0dfafdff050e16171a060e16171a090e16171a0a0e16171a'),
bytes(hex'020c14121d020d14121d030d14121d040d14121d050d14121d060d14121d070d14121d080d14121d090d14121d0a0d14121d0b0d14121d0c0d14121d030e14121d040e14121d'),
bytes(hex'020cfdc9c9020dfdc9c9030dfdc9c9040dfdc9c9050dfdc9c9060dfdc9c9070dfdc9c9080dfdc9c9090dfdc9c90a0dfdc9c90b0dfdc9c90c0dfdc9c9030efdc9c9040efdc9c9'),
bytes(hex'020ceee6ea020deee6ea030deee6ea040deee6ea050deee6ea060deee6ea070deee6ea080deee6ea090deee6ea0a0deee6ea0b0deee6ea0c0deee6ea030eeee6ea040eeee6ea')
];
string[] internal board_traits = [
'Hoverboard 1Bit',
'Hoverboard Inked',
'Hoverboard Sky',
'Hoverboard tan',
'None',
'Skateboard Brown',
'Skateboard Dark Blue',
'Skateboard Green',
'Skateboard Maroon',
'Skateboard White',
'Surfboard Dark',
'Surfboard Faded',
'Surfboard Smoke'
];
uint[] internal board_probability = [5,10,15,20,50,58,66,74,82,91,94,97,100];
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0;
/// @title Base64
/// @author Brecht Devos - <[email protected]>
/// @notice Provides functions for encoding/decoding base64
library Base64 {
string internal constant TABLE_ENCODE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
bytes internal constant TABLE_DECODE = hex"0000000000000000000000000000000000000000000000000000000000000000"
hex"00000000000000000000003e0000003f3435363738393a3b3c3d000000000000"
hex"00000102030405060708090a0b0c0d0e0f101112131415161718190000000000"
hex"001a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132330000000000";
function encode(bytes memory data) internal pure returns (string memory) {
if (data.length == 0) return '';
// load the table into memory
string memory table = TABLE_ENCODE;
// multiply by 4/3 rounded up
uint256 encodedLen = 4 * ((data.length + 2) / 3);
// add some extra buffer at the end required for the writing
string memory result = new string(encodedLen + 32);
assembly {
// set the actual output length
mstore(result, encodedLen)
// prepare the lookup table
let tablePtr := add(table, 1)
// input ptr
let dataPtr := data
let endPtr := add(dataPtr, mload(data))
// result ptr, jump over length
let resultPtr := add(result, 32)
// run over the input, 3 bytes at a time
for {} lt(dataPtr, endPtr) {}
{
// read 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// write 4 characters
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and(shr( 6, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and( input, 0x3F))))
resultPtr := add(resultPtr, 1)
}
// padding with '='
switch mod(mload(data), 3)
case 1 { mstore(sub(resultPtr, 2), shl(240, 0x3d3d)) }
case 2 { mstore(sub(resultPtr, 1), shl(248, 0x3d)) }
}
return result;
}
function decode(string memory _data) internal pure returns (bytes memory) {
bytes memory data = bytes(_data);
if (data.length == 0) return new bytes(0);
require(data.length % 4 == 0, "invalid base64 decoder input");
// load the table into memory
bytes memory table = TABLE_DECODE;
// every 4 characters represent 3 bytes
uint256 decodedLen = (data.length / 4) * 3;
// add some extra buffer at the end required for the writing
bytes memory result = new bytes(decodedLen + 32);
assembly {
// padding with '='
let lastBytes := mload(add(data, mload(data)))
if eq(and(lastBytes, 0xFF), 0x3d) {
decodedLen := sub(decodedLen, 1)
if eq(and(lastBytes, 0xFFFF), 0x3d3d) {
decodedLen := sub(decodedLen, 1)
}
}
// set the actual output length
mstore(result, decodedLen)
// prepare the lookup table
let tablePtr := add(table, 1)
// input ptr
let dataPtr := data
let endPtr := add(dataPtr, mload(data))
// result ptr, jump over length
let resultPtr := add(result, 32)
// run over the input, 4 characters at a time
for {} lt(dataPtr, endPtr) {}
{
// read 4 characters
dataPtr := add(dataPtr, 4)
let input := mload(dataPtr)
// write 3 bytes
let output := add(
add(
shl(18, and(mload(add(tablePtr, and(shr(24, input), 0xFF))), 0xFF)),
shl(12, and(mload(add(tablePtr, and(shr(16, input), 0xFF))), 0xFF))),
add(
shl( 6, and(mload(add(tablePtr, and(shr( 8, input), 0xFF))), 0xFF)),
and(mload(add(tablePtr, and( input , 0xFF))), 0xFF)
)
)
mstore(resultPtr, shl(232, output))
resultPtr := add(resultPtr, 3)
}
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.3.0
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721A.sol';
/**
* @dev Interface of ERC721 token receiver.
*/
interface ERC721A__IERC721Receiver {
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
/**
* @title ERC721A
*
* @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
* Non-Fungible Token Standard, including the Metadata extension.
* Optimized for lower gas during batch mints.
*
* Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
* starting from `_startTokenId()`.
*
* The `_sequentialUpTo()` function can be overriden to enable spot mints
* (i.e. non-consecutive mints) for `tokenId`s greater than `_sequentialUpTo()`.
*
* Assumptions:
*
* - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
* - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
*/
contract ERC721A is IERC721A {
// Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
struct TokenApprovalRef {
address value;
}
// =============================================================
// CONSTANTS
// =============================================================
// Mask of an entry in packed address data.
uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
// The bit position of `numberMinted` in packed address data.
uint256 private constant _BITPOS_NUMBER_MINTED = 64;
// The bit position of `numberBurned` in packed address data.
uint256 private constant _BITPOS_NUMBER_BURNED = 128;
// The bit position of `aux` in packed address data.
uint256 private constant _BITPOS_AUX = 192;
// Mask of all 256 bits in packed address data except the 64 bits for `aux`.
uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
// The bit position of `startTimestamp` in packed ownership.
uint256 private constant _BITPOS_START_TIMESTAMP = 160;
// The bit mask of the `burned` bit in packed ownership.
uint256 private constant _BITMASK_BURNED = 1 << 224;
// The bit position of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
// The bit mask of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
// The bit position of `extraData` in packed ownership.
uint256 private constant _BITPOS_EXTRA_DATA = 232;
// Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
// The mask of the lower 160 bits for addresses.
uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
// The maximum `quantity` that can be minted with {_mintERC2309}.
// This limit is to prevent overflows on the address data entries.
// For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
// is required to cause an overflow, which is unrealistic.
uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
// The `Transfer` event signature is given by:
// `keccak256(bytes("Transfer(address,address,uint256)"))`.
bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
// =============================================================
// STORAGE
// =============================================================
// The next token ID to be minted.
uint256 private _currentIndex;
// The number of tokens burned.
uint256 private _burnCounter;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to ownership details
// An empty struct value does not necessarily mean the token is unowned.
// See {_packedOwnershipOf} implementation for details.
//
// Bits Layout:
// - [0..159] `addr`
// - [160..223] `startTimestamp`
// - [224] `burned`
// - [225] `nextInitialized`
// - [232..255] `extraData`
mapping(uint256 => uint256) private _packedOwnerships;
// Mapping owner address to address data.
//
// Bits Layout:
// - [0..63] `balance`
// - [64..127] `numberMinted`
// - [128..191] `numberBurned`
// - [192..255] `aux`
mapping(address => uint256) private _packedAddressData;
// Mapping from token ID to approved address.
mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// The amount of tokens minted above `_sequentialUpTo()`.
// We call these spot mints (i.e. non-sequential mints).
uint256 private _spotMinted;
// =============================================================
// CONSTRUCTOR
// =============================================================
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_currentIndex = _startTokenId();
if (_sequentialUpTo() < _startTokenId()) _revert(SequentialUpToTooSmall.selector);
}
// =============================================================
// TOKEN COUNTING OPERATIONS
// =============================================================
/**
* @dev Returns the starting token ID for sequential mints.
*
* Override this function to change the starting token ID for sequential mints.
*
* Note: The value returned must never change after any tokens have been minted.
*/
function _startTokenId() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev Returns the maximum token ID (inclusive) for sequential mints.
*
* Override this function to return a value less than 2**256 - 1,
* but greater than `_startTokenId()`, to enable spot (non-sequential) mints.
*
* Note: The value returned must never change after any tokens have been minted.
*/
function _sequentialUpTo() internal view virtual returns (uint256) {
return type(uint256).max;
}
/**
* @dev Returns the next token ID to be minted.
*/
function _nextTokenId() internal view virtual returns (uint256) {
return _currentIndex;
}
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() public view virtual override returns (uint256 result) {
// Counter underflow is impossible as `_burnCounter` cannot be incremented
// more than `_currentIndex + _spotMinted - _startTokenId()` times.
unchecked {
// With spot minting, the intermediate `result` can be temporarily negative,
// and the computation must be unchecked.
result = _currentIndex - _burnCounter - _startTokenId();
if (_sequentialUpTo() != type(uint256).max) result += _spotMinted;
}
}
/**
* @dev Returns the total amount of tokens minted in the contract.
*/
function _totalMinted() internal view virtual returns (uint256 result) {
// Counter underflow is impossible as `_currentIndex` does not decrement,
// and it is initialized to `_startTokenId()`.
unchecked {
result = _currentIndex - _startTokenId();
if (_sequentialUpTo() != type(uint256).max) result += _spotMinted;
}
}
/**
* @dev Returns the total number of tokens burned.
*/
function _totalBurned() internal view virtual returns (uint256) {
return _burnCounter;
}
/**
* @dev Returns the total number of tokens that are spot-minted.
*/
function _totalSpotMinted() internal view virtual returns (uint256) {
return _spotMinted;
}
// =============================================================
// ADDRESS DATA OPERATIONS
// =============================================================
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
if (owner == address(0)) _revert(BalanceQueryForZeroAddress.selector);
return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens minted by `owner`.
*/
function _numberMinted(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens burned by or on behalf of `owner`.
*/
function _numberBurned(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
*/
function _getAux(address owner) internal view returns (uint64) {
return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
}
/**
* Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
* If there are multiple variables, please pack them into a uint64.
*/
function _setAux(address owner, uint64 aux) internal virtual {
uint256 packed = _packedAddressData[owner];
uint256 auxCasted;
// Cast `aux` with assembly to avoid redundant masking.
assembly {
auxCasted := aux
}
packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
_packedAddressData[owner] = packed;
}
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
// The interface IDs are constants representing the first 4 bytes
// of the XOR of all function selectors in the interface.
// See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
// (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
return
interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
}
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the token collection symbol.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
if (!_exists(tokenId)) _revert(URIQueryForNonexistentToken.selector);
string memory baseURI = _baseURI();
return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, it can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return '';
}
// =============================================================
// OWNERSHIPS OPERATIONS
// =============================================================
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
return address(uint160(_packedOwnershipOf(tokenId)));
}
/**
* @dev Gas spent here starts off proportional to the maximum mint batch size.
* It gradually moves to O(1) as tokens get transferred around over time.
*/
function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnershipOf(tokenId));
}
/**
* @dev Returns the unpacked `TokenOwnership` struct at `index`.
*/
function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnerships[index]);
}
/**
* @dev Returns whether the ownership slot at `index` is initialized.
* An uninitialized slot does not necessarily mean that the slot has no owner.
*/
function _ownershipIsInitialized(uint256 index) internal view virtual returns (bool) {
return _packedOwnerships[index] != 0;
}
/**
* @dev Initializes the ownership slot minted at `index` for efficiency purposes.
*/
function _initializeOwnershipAt(uint256 index) internal virtual {
if (_packedOwnerships[index] == 0) {
_packedOwnerships[index] = _packedOwnershipOf(index);
}
}
/**
* @dev Returns the packed ownership data of `tokenId`.
*/
function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) {
if (_startTokenId() <= tokenId) {
packed = _packedOwnerships[tokenId];
if (tokenId > _sequentialUpTo()) {
if (_packedOwnershipExists(packed)) return packed;
_revert(OwnerQueryForNonexistentToken.selector);
}
// If the data at the starting slot does not exist, start the scan.
if (packed == 0) {
if (tokenId >= _currentIndex) _revert(OwnerQueryForNonexistentToken.selector);
// Invariant:
// There will always be an initialized ownership slot
// (i.e. `ownership.addr != address(0) && ownership.burned == false`)
// before an unintialized ownership slot
// (i.e. `ownership.addr == address(0) && ownership.burned == false`)
// Hence, `tokenId` will not underflow.
//
// We can directly compare the packed value.
// If the address is zero, packed will be zero.
for (;;) {
unchecked {
packed = _packedOwnerships[--tokenId];
}
if (packed == 0) continue;
if (packed & _BITMASK_BURNED == 0) return packed;
// Otherwise, the token is burned, and we must revert.
// This handles the case of batch burned tokens, where only the burned bit
// of the starting slot is set, and remaining slots are left uninitialized.
_revert(OwnerQueryForNonexistentToken.selector);
}
}
// Otherwise, the data exists and we can skip the scan.
// This is possible because we have already achieved the target condition.
// This saves 2143 gas on transfers of initialized tokens.
// If the token is not burned, return `packed`. Otherwise, revert.
if (packed & _BITMASK_BURNED == 0) return packed;
}
_revert(OwnerQueryForNonexistentToken.selector);
}
/**
* @dev Returns the unpacked `TokenOwnership` struct from `packed`.
*/
function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
ownership.addr = address(uint160(packed));
ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
ownership.burned = packed & _BITMASK_BURNED != 0;
ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
}
/**
* @dev Packs ownership data into a single uint256.
*/
function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
}
}
/**
* @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
*/
function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
// For branchless setting of the `nextInitialized` flag.
assembly {
// `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
}
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
*/
function approve(address to, uint256 tokenId) public payable virtual override {
_approve(to, tokenId, true);
}
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
if (!_exists(tokenId)) _revert(ApprovalQueryForNonexistentToken.selector);
return _tokenApprovals[tokenId].value;
}
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_operatorApprovals[_msgSenderERC721A()][operator] = approved;
emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
}
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted. See {_mint}.
*/
function _exists(uint256 tokenId) internal view virtual returns (bool result) {
if (_startTokenId() <= tokenId) {
if (tokenId > _sequentialUpTo()) return _packedOwnershipExists(_packedOwnerships[tokenId]);
if (tokenId < _currentIndex) {
uint256 packed;
while ((packed = _packedOwnerships[tokenId]) == 0) --tokenId;
result = packed & _BITMASK_BURNED == 0;
}
}
}
/**
* @dev Returns whether `packed` represents a token that exists.
*/
function _packedOwnershipExists(uint256 packed) private pure returns (bool result) {
assembly {
// The following is equivalent to `owner != address(0) && burned == false`.
// Symbolically tested.
result := gt(and(packed, _BITMASK_ADDRESS), and(packed, _BITMASK_BURNED))
}
}
/**
* @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
*/
function _isSenderApprovedOrOwner(
address approvedAddress,
address owner,
address msgSender
) private pure returns (bool result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
msgSender := and(msgSender, _BITMASK_ADDRESS)
// `msgSender == owner || msgSender == approvedAddress`.
result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
}
}
/**
* @dev Returns the storage slot and value for the approved address of `tokenId`.
*/
function _getApprovedSlotAndAddress(uint256 tokenId)
private
view
returns (uint256 approvedAddressSlot, address approvedAddress)
{
TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
// The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
assembly {
approvedAddressSlot := tokenApproval.slot
approvedAddress := sload(approvedAddressSlot)
}
}
// =============================================================
// TRANSFER OPERATIONS
// =============================================================
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
// Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean.
from = address(uint160(uint256(uint160(from)) & _BITMASK_ADDRESS));
if (address(uint160(prevOwnershipPacked)) != from) _revert(TransferFromIncorrectOwner.selector);
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);
_beforeTokenTransfers(from, to, tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// We can directly increment and decrement the balances.
--_packedAddressData[from]; // Updates: `balance -= 1`.
++_packedAddressData[to]; // Updates: `balance += 1`.
// Updates:
// - `address` to the next owner.
// - `startTimestamp` to the timestamp of transfering.
// - `burned` to `false`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
to,
_BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
from, // `from`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
if (toMasked == 0) _revert(TransferToZeroAddress.selector);
_afterTokenTransfers(from, to, tokenId, 1);
}
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
safeTransferFrom(from, to, tokenId, '');
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public payable virtual override {
transferFrom(from, to, tokenId);
if (to.code.length != 0)
if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
}
/**
* @dev Hook that is called before a set of serially-ordered token IDs
* are about to be transferred. This includes minting.
* And also called before burning one token.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _beforeTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Hook that is called after a set of serially-ordered token IDs
* have been transferred. This includes minting.
* And also called after one token has been burned.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
* transferred to `to`.
* - When `from` is zero, `tokenId` has been minted for `to`.
* - When `to` is zero, `tokenId` has been burned by `from`.
* - `from` and `to` are never both zero.
*/
function _afterTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
*
* `from` - Previous owner of the given token ID.
* `to` - Target address that will receive the token.
* `tokenId` - Token ID to be transferred.
* `_data` - Optional data to send along with the call.
*
* Returns whether the call correctly returned the expected magic value.
*/
function _checkContractOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
bytes4 retval
) {
return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
assembly {
revert(add(32, reason), mload(reason))
}
}
}
// =============================================================
// MINT OPERATIONS
// =============================================================
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {Transfer} event for each mint.
*/
function _mint(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (quantity == 0) _revert(MintZeroQuantity.selector);
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are incredibly unrealistic.
// `balance` and `numberMinted` have a maximum limit of 2**64.
// `tokenId` has a maximum limit of 2**256.
unchecked {
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
if (toMasked == 0) _revert(MintToZeroAddress.selector);
uint256 end = startTokenId + quantity;
uint256 tokenId = startTokenId;
if (end - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);
do {
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
// The `!=` check ensures that large values of `quantity`
// that overflows uint256 will make the loop run out of gas.
} while (++tokenId != end);
_currentIndex = end;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* This function is intended for efficient minting only during contract creation.
*
* It emits only one {ConsecutiveTransfer} as defined in
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
* instead of a sequence of {Transfer} event(s).
*
* Calling this function outside of contract creation WILL make your contract
* non-compliant with the ERC721 standard.
* For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
* {ConsecutiveTransfer} event is only permissible during contract creation.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {ConsecutiveTransfer} event.
*/
function _mintERC2309(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (to == address(0)) _revert(MintToZeroAddress.selector);
if (quantity == 0) _revert(MintZeroQuantity.selector);
if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) _revert(MintERC2309QuantityExceedsLimit.selector);
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are unrealistic due to the above check for `quantity` to be below the limit.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
if (startTokenId + quantity - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);
emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
_currentIndex = startTokenId + quantity;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Safely mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
* - `quantity` must be greater than 0.
*
* See {_mint}.
*
* Emits a {Transfer} event for each mint.
*/
function _safeMint(
address to,
uint256 quantity,
bytes memory _data
) internal virtual {
_mint(to, quantity);
unchecked {
if (to.code.length != 0) {
uint256 end = _currentIndex;
uint256 index = end - quantity;
do {
if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
} while (index < end);
// This prevents reentrancy to `_safeMint`.
// It does not prevent reentrancy to `_safeMintSpot`.
if (_currentIndex != end) revert();
}
}
}
/**
* @dev Equivalent to `_safeMint(to, quantity, '')`.
*/
function _safeMint(address to, uint256 quantity) internal virtual {
_safeMint(to, quantity, '');
}
/**
* @dev Mints a single token at `tokenId`.
*
* Note: A spot-minted `tokenId` that has been burned can be re-minted again.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` must be greater than `_sequentialUpTo()`.
* - `tokenId` must not exist.
*
* Emits a {Transfer} event for each mint.
*/
function _mintSpot(address to, uint256 tokenId) internal virtual {
if (tokenId <= _sequentialUpTo()) _revert(SpotMintTokenIdTooSmall.selector);
uint256 prevOwnershipPacked = _packedOwnerships[tokenId];
if (_packedOwnershipExists(prevOwnershipPacked)) _revert(TokenAlreadyExists.selector);
_beforeTokenTransfers(address(0), to, tokenId, 1);
// Overflows are incredibly unrealistic.
// The `numberMinted` for `to` is incremented by 1, and has a max limit of 2**64 - 1.
// `_spotMinted` is incremented by 1, and has a max limit of 2**256 - 1.
unchecked {
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `true` (as `quantity == 1`).
_packedOwnerships[tokenId] = _packOwnershipData(
to,
_nextInitializedFlag(1) | _nextExtraData(address(0), to, prevOwnershipPacked)
);
// Updates:
// - `balance += 1`.
// - `numberMinted += 1`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += (1 << _BITPOS_NUMBER_MINTED) | 1;
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
if (toMasked == 0) _revert(MintToZeroAddress.selector);
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
++_spotMinted;
}
_afterTokenTransfers(address(0), to, tokenId, 1);
}
/**
* @dev Safely mints a single token at `tokenId`.
*
* Note: A spot-minted `tokenId` that has been burned can be re-minted again.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}.
* - `tokenId` must be greater than `_sequentialUpTo()`.
* - `tokenId` must not exist.
*
* See {_mintSpot}.
*
* Emits a {Transfer} event.
*/
function _safeMintSpot(
address to,
uint256 tokenId,
bytes memory _data
) internal virtual {
_mintSpot(to, tokenId);
unchecked {
if (to.code.length != 0) {
uint256 currentSpotMinted = _spotMinted;
if (!_checkContractOnERC721Received(address(0), to, tokenId, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
// This prevents reentrancy to `_safeMintSpot`.
// It does not prevent reentrancy to `_safeMint`.
if (_spotMinted != currentSpotMinted) revert();
}
}
}
/**
* @dev Equivalent to `_safeMintSpot(to, tokenId, '')`.
*/
function _safeMintSpot(address to, uint256 tokenId) internal virtual {
_safeMintSpot(to, tokenId, '');
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_approve(to, tokenId, false)`.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_approve(to, tokenId, false);
}
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function _approve(
address to,
uint256 tokenId,
bool approvalCheck
) internal virtual {
address owner = ownerOf(tokenId);
if (approvalCheck && _msgSenderERC721A() != owner)
if (!isApprovedForAll(owner, _msgSenderERC721A())) {
_revert(ApprovalCallerNotOwnerNorApproved.selector);
}
_tokenApprovals[tokenId].value = to;
emit Approval(owner, to, tokenId);
}
// =============================================================
// BURN OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_burn(tokenId, false)`.
*/
function _burn(uint256 tokenId) internal virtual {
_burn(tokenId, false);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
address from = address(uint160(prevOwnershipPacked));
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
if (approvalCheck) {
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);
}
_beforeTokenTransfers(from, address(0), tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// Updates:
// - `balance -= 1`.
// - `numberBurned += 1`.
//
// We can directly decrement the balance, and increment the number burned.
// This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
_packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
// Updates:
// - `address` to the last owner.
// - `startTimestamp` to the timestamp of burning.
// - `burned` to `true`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
from,
(_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, address(0), tokenId);
_afterTokenTransfers(from, address(0), tokenId, 1);
// Overflow not possible, as `_burnCounter` cannot be exceed `_currentIndex + _spotMinted` times.
unchecked {
_burnCounter++;
}
}
// =============================================================
// EXTRA DATA OPERATIONS
// =============================================================
/**
* @dev Directly sets the extra data for the ownership data `index`.
*/
function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
uint256 packed = _packedOwnerships[index];
if (packed == 0) _revert(OwnershipNotInitializedForExtraData.selector);
uint256 extraDataCasted;
// Cast `extraData` with assembly to avoid redundant masking.
assembly {
extraDataCasted := extraData
}
packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
_packedOwnerships[index] = packed;
}
/**
* @dev Called during each token transfer to set the 24bit `extraData` field.
* Intended to be overridden by the cosumer contract.
*
* `previousExtraData` - the value of `extraData` before transfer.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _extraData(
address from,
address to,
uint24 previousExtraData
) internal view virtual returns (uint24) {}
/**
* @dev Returns the next extra data for the packed ownership data.
* The returned result is shifted into position.
*/
function _nextExtraData(
address from,
address to,
uint256 prevOwnershipPacked
) private view returns (uint256) {
uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
}
// =============================================================
// OTHER OPERATIONS
// =============================================================
/**
* @dev Returns the message sender (defaults to `msg.sender`).
*
* If you are writing GSN compatible contracts, you need to override this function.
*/
function _msgSenderERC721A() internal view virtual returns (address) {
return msg.sender;
}
/**
* @dev Converts a uint256 to its ASCII string decimal representation.
*/
function _toString(uint256 value) internal pure virtual returns (string memory str) {
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
let m := add(mload(0x40), 0xa0)
// Update the free memory pointer to allocate.
mstore(0x40, m)
// Assign the `str` to the end.
str := sub(m, 0x20)
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
// prettier-ignore
for { let temp := value } 1 {} {
str := sub(str, 1)
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
// prettier-ignore
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
/**
* @dev For more efficient reverts.
*/
function _revert(bytes4 errorSelector) internal pure {
assembly {
mstore(0x00, errorSelector)
revert(0x00, 0x04)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
// Inspired by OraclizeAPI's implementation - MIT licence
// https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
if (value == 0) {
return "0";
}
uint256 temp = value;
uint256 digits;
while (temp != 0) {
digits++;
temp /= 10;
}
bytes memory buffer = new bytes(digits);
while (value != 0) {
digits -= 1;
buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
value /= 10;
}
return string(buffer);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
if (value == 0) {
return "0x00";
}
uint256 temp = value;
uint256 length = 0;
while (temp != 0) {
length++;
temp >>= 8;
}
return toHexString(value, length);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _HEX_SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.3.0
// Creator: Chiru Labs
pragma solidity ^0.8.4;
/**
* @dev Interface of ERC721A.
*/
interface IERC721A {
/**
* The caller must own the token or be an approved operator.
*/
error ApprovalCallerNotOwnerNorApproved();
/**
* The token does not exist.
*/
error ApprovalQueryForNonexistentToken();
/**
* Cannot query the balance for the zero address.
*/
error BalanceQueryForZeroAddress();
/**
* Cannot mint to the zero address.
*/
error MintToZeroAddress();
/**
* The quantity of tokens minted must be more than zero.
*/
error MintZeroQuantity();
/**
* The token does not exist.
*/
error OwnerQueryForNonexistentToken();
/**
* The caller must own the token or be an approved operator.
*/
error TransferCallerNotOwnerNorApproved();
/**
* The token must be owned by `from`.
*/
error TransferFromIncorrectOwner();
/**
* Cannot safely transfer to a contract that does not implement the
* ERC721Receiver interface.
*/
error TransferToNonERC721ReceiverImplementer();
/**
* Cannot transfer to the zero address.
*/
error TransferToZeroAddress();
/**
* The token does not exist.
*/
error URIQueryForNonexistentToken();
/**
* The `quantity` minted with ERC2309 exceeds the safety limit.
*/
error MintERC2309QuantityExceedsLimit();
/**
* The `extraData` cannot be set on an unintialized ownership slot.
*/
error OwnershipNotInitializedForExtraData();
/**
* `_sequentialUpTo()` must be greater than `_startTokenId()`.
*/
error SequentialUpToTooSmall();
/**
* The `tokenId` of a sequential mint exceeds `_sequentialUpTo()`.
*/
error SequentialMintExceedsLimit();
/**
* Spot minting requires a `tokenId` greater than `_sequentialUpTo()`.
*/
error SpotMintTokenIdTooSmall();
/**
* Cannot mint over a token that already exists.
*/
error TokenAlreadyExists();
/**
* The feature is not compatible with spot mints.
*/
error NotCompatibleWithSpotMints();
// =============================================================
// STRUCTS
// =============================================================
struct TokenOwnership {
// The address of the owner.
address addr;
// Stores the start time of ownership with minimal overhead for tokenomics.
uint64 startTimestamp;
// Whether the token has been burned.
bool burned;
// Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
uint24 extraData;
}
// =============================================================
// TOKEN COUNTERS
// =============================================================
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() external view returns (uint256);
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
// =============================================================
// IERC721
// =============================================================
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables
* (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`,
* checking first that contract recipients are aware of the ERC721 protocol
* to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move
* this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external payable;
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom}
* whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external payable;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
// =============================================================
// IERC2309
// =============================================================
/**
* @dev Emitted when tokens in `fromTokenId` to `toTokenId`
* (inclusive) is transferred from `from` to `to`, as defined in the
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
*
* See {_mintERC2309} for more details.
*/
event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}