Contract Name:
AAFactoryPaymaster
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import {Transaction} from "@matterlabs/zksync-contracts/l2/system-contracts/libraries/TransactionHelper.sol";
import {
IPaymaster,
ExecutionResult,
PAYMASTER_VALIDATION_SUCCESS_MAGIC
} from "@matterlabs/zksync-contracts/l2/system-contracts/interfaces/IPaymaster.sol";
import {AccountFactory} from "../AccountFactory.sol";
import {BOOTLOADER_FORMAL_ADDRESS} from "@matterlabs/zksync-contracts/l2/system-contracts/Constants.sol";
/**
* This Paymaster sponsors the gas for any user attempting to deploy an AGW account for themselves
* It also allows the canonical AGW deployer to sponsor deployments for users
*/
contract AAFactoryPaymaster is IPaymaster {
error OnlyDeployer();
error OnlyBootloader();
error MustCallAAFactory();
error MustCallCreateAccount();
error InvalidDeployer();
error WithdrawalFailed();
error BootloaderCallFailed();
address public immutable AA_FACTORY;
address private immutable _deployer;
constructor(address _aaFactory) {
AA_FACTORY = _aaFactory;
_deployer = msg.sender;
}
function validateAndPayForPaymasterTransaction(bytes32, bytes32, Transaction calldata _transaction)
external
payable
returns (bytes4 magic, bytes memory context)
{
if (msg.sender != BOOTLOADER_FORMAL_ADDRESS) {
revert OnlyBootloader();
}
if (address(uint160(_transaction.to)) != AA_FACTORY) {
revert MustCallAAFactory();
}
if (bytes4(_transaction.data[0:4]) != AccountFactory.deployAccount.selector) {
revert MustCallCreateAccount();
}
if (!AccountFactory(AA_FACTORY).authorizedDeployers(address(uint160(_transaction.from)))) {
revert InvalidDeployer();
}
context = "";
magic = PAYMASTER_VALIDATION_SUCCESS_MAGIC;
uint256 requiredETH = _transaction.gasLimit * _transaction.maxFeePerGas;
(bool success,) = BOOTLOADER_FORMAL_ADDRESS.call{value: requiredETH}("");
if (!success) {
revert BootloaderCallFailed();
}
}
function postTransaction(
bytes calldata _context,
Transaction calldata _transaction,
bytes32 _txHash,
bytes32 _suggestedSignedHash,
ExecutionResult _txResult,
uint256 _maxRefundedGas
) external payable {}
function withdraw() external {
if (msg.sender != _deployer) {
revert OnlyDeployer();
}
(bool success,) = _deployer.call{value: address(this).balance}("");
if (!success) {
revert WithdrawalFailed();
}
}
receive() external payable {}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.17;
import {DEPLOYER_SYSTEM_CONTRACT, IContractDeployer} from '@matterlabs/zksync-contracts/l2/system-contracts/Constants.sol';
import {SystemContractsCaller} from '@matterlabs/zksync-contracts/l2/system-contracts/libraries/SystemContractsCaller.sol';
import {Ownable, Ownable2Step} from '@openzeppelin/contracts/access/Ownable2Step.sol';
import {EfficientCall} from '@matterlabs/zksync-contracts/l2/system-contracts/libraries/EfficientCall.sol';
import {Errors} from './libraries/Errors.sol';
import {IAGWRegistry} from './interfaces/IAGWRegistry.sol';
/**
* @title Factory contract to create AGW accounts
* @dev Forked from Clave for Abstract
* @author https://abs.xyz
* @author https://getclave.io
*/
contract AccountFactory is Ownable2Step {
/**
* @notice Address of the account implementation
*/
address public implementationAddress;
/**
* @notice Allowed selector for account initialization
*/
bytes4 public initializerSelector;
/**
* @notice Account registry contract address
*/
address public registry;
/**
* @notice Account creation bytecode hash
*/
bytes32 public proxyBytecodeHash;
/**
* @notice Authorized deployers of AGW accounts
*/
mapping (address deployer => bool authorized) public authorizedDeployers;
/**
* @notice Tracks the initial deployer of each account
*/
mapping (address account => address deployer) public accountToDeployer;
/**
* @notice Account address deployed for a given salt the same account
* @dev This is used to override the deterministic account address if the account is already deployed
* and the initial implementation has been changed
*/
mapping (bytes32 salt => address accountAddress) public saltToAccount;
/**
* @notice Event emmited when a new AGW account is created
* @param accountAddress Address of the newly created AGW account
*/
event AGWAccountCreated(address indexed accountAddress);
/**
* @notice Event emmited when a new AGW account is deployed
* @param accountAddress Address of the newly deployed AGW account
*/
event AGWAccountDeployed(address indexed accountAddress);
/**
* @notice Event emmited when a deployer account is authorized
* @param deployer Address of the deployer account
* @param authorized Whether the deployer is authorized to deploy AGW accounts
*/
event DeployerAuthorized(address indexed deployer, bool indexed authorized);
/**
* @notice Event emmited when the implementation contract is changed
* @param newImplementation Address of the new implementation contract
*/
event ImplementationChanged(address indexed newImplementation);
/**
* @notice Event emmited when the registry contract is changed
* @param newRegistry Address of the new registry contract
*/
event RegistryChanged(address indexed newRegistry);
/**
* @notice Constructor function of the factory contract
* @param _implementation address - Address of the implementation contract
* @param _registry address - Address of the registry contract
* @param _proxyBytecodeHash address - Hash of the bytecode of the AGW proxy contract
* @param _deployer address - Address of the account authorized to deploy AGW accounts
*/
constructor(
address _implementation,
bytes4 _initializerSelector,
address _registry,
bytes32 _proxyBytecodeHash,
address _deployer,
address _owner
) Ownable(_owner) {
implementationAddress = _implementation;
emit ImplementationChanged(_implementation);
initializerSelector = _initializerSelector;
registry = _registry;
proxyBytecodeHash = _proxyBytecodeHash;
authorizedDeployers[_deployer] = true;
emit DeployerAuthorized(_deployer, true);
}
/**
* @notice Deploys a new AGW account
* @dev Account address depends only on salt
* @param salt bytes32 - Salt to be used for the account creation
* @param initializer bytes memory - Initializer data for the account
* @return accountAddress address - Address of the newly created AGW account
*/
function deployAccount(
bytes32 salt,
bytes calldata initializer
) external payable returns (address accountAddress) {
if (saltToAccount[salt] != address(0)) {
revert Errors.ALREADY_CREATED();
}
// Check that the initializer is not empty
if (initializer.length < 4) {
revert Errors.INVALID_INITIALIZER();
}
// Check that the initializer selector is correct
{
bytes4 selector = bytes4(initializer[0:4]);
if (selector != initializerSelector) {
revert Errors.INVALID_INITIALIZER();
}
}
// Deploy the implementation contract
(bool success, bytes memory returnData) = SystemContractsCaller.systemCallWithReturndata(
uint32(gasleft()),
address(DEPLOYER_SYSTEM_CONTRACT),
uint128(0),
abi.encodeCall(
DEPLOYER_SYSTEM_CONTRACT.create2Account,
(
salt,
proxyBytecodeHash,
abi.encode(implementationAddress),
IContractDeployer.AccountAbstractionVersion.Version1
)
)
);
if (!success) {
revert Errors.DEPLOYMENT_FAILED();
}
// Decode the account address
(accountAddress) = abi.decode(returnData, (address));
// Store the deployer of the account
accountToDeployer[accountAddress] = msg.sender;
saltToAccount[salt] = accountAddress;
// This propagates the revert if the initialization fails
EfficientCall.call(gasleft(), accountAddress, msg.value, initializer, false);
IAGWRegistry(registry).register(accountAddress);
emit AGWAccountDeployed(accountAddress);
}
/**
* @notice To emit an event when a AGW account is created but not yet deployed
* @dev This event is so that we can index accounts that are created but not yet deployed
* @param accountAddress address - Address of the AGW account that was created
*/
function agwAccountCreated(address accountAddress) external {
if (!authorizedDeployers[msg.sender]) {
revert Errors.NOT_FROM_DEPLOYER();
}
emit AGWAccountCreated(accountAddress);
}
/**
* @notice Sets authorization to deploy AGW accounts
* @param deployer address - Address of the new account authorized to deploy AGW accounts
* @param authorized bool - Whether the new deployer is authorized to deploy AGW accounts
*/
function setDeployer(address deployer, bool authorized) external onlyOwner {
authorizedDeployers[deployer] = authorized;
emit DeployerAuthorized(deployer, authorized);
}
/**
* @notice Changes the implementation contract address
* @param newImplementation address - Address of the new implementation contract
*/
function changeImplementation(address newImplementation, bytes4 newInitializerSelector) external onlyOwner {
implementationAddress = newImplementation;
initializerSelector = newInitializerSelector;
emit ImplementationChanged(newImplementation);
}
/**
* @notice Changes the registry contract address
* @param newRegistry address - Address of the new registry contract
*/
function changeRegistry(address newRegistry) external onlyOwner {
registry = newRegistry;
emit RegistryChanged(newRegistry);
}
/**
* @notice Returns the address of the AGW account that would be created with the given salt
* @dev If the account already exists, it returns the existing account address
* @param salt bytes32 - Salt to be used for the account creation
* @return accountAddress address - Address of the AGW account that would be created with the given salt
*/
function getAddressForSalt(bytes32 salt) external view returns (address accountAddress) {
// Check if the account is already deployed
accountAddress = saltToAccount[salt];
if (accountAddress == address(0)) {
// If not, get the deterministic account address for the current implementation
accountAddress = IContractDeployer(DEPLOYER_SYSTEM_CONTRACT).getNewAddressCreate2(
address(this),
proxyBytecodeHash,
salt,
abi.encode(implementationAddress)
);
}
}
/**
* @notice Returns the address of the AGW account that would be created with the given salt and implementation
* @param salt bytes32 - Salt to be used for the account creation
* @param _implementation address - Address of the implementation contract
* @return accountAddress address - Address of the AGW account that would be created with the given salt and implementation
*/
function getAddressForSaltAndImplementation(
bytes32 salt,
address _implementation
) external view returns (address accountAddress) {
accountAddress = IContractDeployer(DEPLOYER_SYSTEM_CONTRACT).getNewAddressCreate2(
address(this),
proxyBytecodeHash,
salt,
abi.encode(_implementation)
);
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.17;
library Errors {
/*//////////////////////////////////////////////////////////////
AGW
//////////////////////////////////////////////////////////////*/
error INSUFFICIENT_FUNDS(); // 0xe7931438
error FEE_PAYMENT_FAILED(); // 0x3d40a3a3
error UNAUTHORIZED_OUTSIDE_TRANSACTION(); // 0xfc82da4e
error VALIDATION_HOOK_FAILED(); // 0x52c9d27a
/*//////////////////////////////////////////////////////////////
LINKED LIST
//////////////////////////////////////////////////////////////*/
error INVALID_PREV(); // 0x5a4c0eb3
// Bytes
error INVALID_BYTES(); // 0xb6dfaaff
error BYTES_ALREADY_EXISTS(); // 0xdf6cac6b
error BYTES_NOT_EXISTS(); // 0x689908a6
// Address
error INVALID_ADDRESS(); // 0x5963709b
error ADDRESS_ALREADY_EXISTS(); // 0xf2d4d191
error ADDRESS_NOT_EXISTS(); // 0xad6ab975
/*//////////////////////////////////////////////////////////////
OWNER MANAGER
//////////////////////////////////////////////////////////////*/
error EMPTY_OWNERS(); // 0xc957eb7e
error INVALID_PUBKEY_LENGTH(); // 0x04c4d8f7
/*//////////////////////////////////////////////////////////////
VALIDATOR MANAGER
//////////////////////////////////////////////////////////////*/
error EMPTY_VALIDATORS(); // 0xd7c64d89
error VALIDATOR_ERC165_FAIL(); // 0x5d5273ad
/*//////////////////////////////////////////////////////////////
UPGRADE MANAGER
//////////////////////////////////////////////////////////////*/
error SAME_IMPLEMENTATION(); // 0x5e741005
/*//////////////////////////////////////////////////////////////
HOOK MANAGER
//////////////////////////////////////////////////////////////*/
error EMPTY_HOOK_ADDRESS(); // 0x413348ae
error HOOK_ERC165_FAIL(); // 0x9f93f87d
error INVALID_KEY(); // 0xce7045bd
/*//////////////////////////////////////////////////////////////
MODULE MANAGER
//////////////////////////////////////////////////////////////*/
error EMPTY_MODULE_ADDRESS(); // 0x912fe2f2
error RECUSIVE_MODULE_CALL(); // 0x2cf7b9c8
error MODULE_ERC165_FAIL(); // 0xc1ad2a50
/*//////////////////////////////////////////////////////////////
AUTH
//////////////////////////////////////////////////////////////*/
error NOT_FROM_BOOTLOADER(); // 0x93887e3b
error NOT_FROM_MODULE(); // 0x574a805d
error NOT_FROM_HOOK(); // 0xd675a4f1
error NOT_FROM_SELF(); // 0xa70c28d1
error NOT_FROM_SELF_OR_MODULE(); // 0x22a1259f
/*//////////////////////////////////////////////////////////////
R1 VALIDATOR
//////////////////////////////////////////////////////////////*/
error INVALID_SIGNATURE(); // 0xa3402a38
/*//////////////////////////////////////////////////////////////
SOCIAL RECOVERY
//////////////////////////////////////////////////////////////*/
error INVALID_RECOVERY_CONFIG(); // 0xf774f439
error INVALID_RECOVERY_NONCE(); // 0x098c9f8e
error INVALID_GUARDIAN(); // 0x11a2a82b
error INVALID_GUARDIAN_SIGNATURE(); // 0xcc117c1c
error ZERO_ADDRESS_GUARDIAN(); // 0x6de9b401
error GUARDIANS_MUST_BE_SORTED(); // 0xc52b41f7
error RECOVERY_TIMELOCK(); // 0x1506ac5a
error RECOVERY_NOT_STARTED(); // 0xa6a4a3aa
error RECOVERY_NOT_INITED(); // 0xd0f6fdbf
error RECOVERY_IN_PROGRESS(); // 0x8daa42a9
error INSUFFICIENT_GUARDIANS(); // 0x7629075d
error ALREADY_INITED(); // 0xdb0c77c8
/*//////////////////////////////////////////////////////////////
FACTORY
//////////////////////////////////////////////////////////////*/
error DEPLOYMENT_FAILED(); // 0x0f02d218
error INITIALIZATION_FAILED(); // 0x5b101091
error INVALID_INITIALIZER(); // 0x350366d7
error INVALID_SALT(); // 0x8b3152e6
error ALREADY_CREATED(); // 0x26ebf2e8
/*//////////////////////////////////////////////////////////////
PAYMASTER
//////////////////////////////////////////////////////////////*/
error UNSUPPORTED_FLOW(); // 0xd721e389
error UNAUTHORIZED_WITHDRAW(); // 0x7809a0b4
error INVALID_TOKEN(); // 0xd0995cf2
error SHORT_PAYMASTER_INPUT(); // 0x48d170f6
error UNSUPPORTED_TOKEN(); // 0xce706f70
error LESS_ALLOWANCE_FOR_PAYMASTER(); // 0x11f7d13f
error FAILED_FEE_TRANSFER(); // 0xf316e09d
error INVALID_MARKUP(); // 0x4af7ffe3
error USER_LIMIT_REACHED(); // 0x07235346
error INVALID_USER_LIMIT(); // 0x2640fa41
error NOT_AGW_ACCOUNT(); // 0x1ae1d6fd
error EXCEEDS_MAX_SPONSORED_ETH(); // 0x3f379f40
/*//////////////////////////////////////////////////////////////
REGISTRY
//////////////////////////////////////////////////////////////*/
error NOT_FROM_FACTORY(); // 0x238438ed
error NOT_FROM_DEPLOYER(); // 0x83f090e3
/*//////////////////////////////////////////////////////////////
BatchCaller
//////////////////////////////////////////////////////////////*/
error ONLY_DELEGATECALL(); // 0x43d22ee9
error CALL_FAILED(); // 0x84aed38d
/*//////////////////////////////////////////////////////////////
INITABLE
//////////////////////////////////////////////////////////////*/
error MODULE_NOT_ADDED_CORRECTLY(); // 0xb66e8ec4
error MODULE_NOT_REMOVED_CORRECTLY(); // 0x680c8744
error MsgValueMismatch(uint256 actualValue, uint256 expectedValue);
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.17;
interface IAGWRegistry {
function register(address account) external;
function isAGW(address account) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This extension of the {Ownable} contract includes a two-step mechanism to transfer
* ownership, where the new owner must call {acceptOwnership} in order to replace the
* old one. This can help prevent common mistakes, such as transfers of ownership to
* incorrect accounts, or to contracts that are unable to interact with the
* permission system.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*
* Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./interfaces/IAccountCodeStorage.sol";
import "./interfaces/INonceHolder.sol";
import "./interfaces/IContractDeployer.sol";
import "./interfaces/IKnownCodesStorage.sol";
import "./interfaces/IImmutableSimulator.sol";
import "./interfaces/IEthToken.sol";
import "./interfaces/IL1Messenger.sol";
import "./interfaces/ISystemContext.sol";
import "./interfaces/IBytecodeCompressor.sol";
import "./BootloaderUtilities.sol";
/// @dev All the system contracts introduced by zkSync have their addresses
/// started from 2^15 in order to avoid collision with Ethereum precompiles.
uint160 constant SYSTEM_CONTRACTS_OFFSET = 0x8000; // 2^15
/// @dev All the system contracts must be located in the kernel space,
/// i.e. their addresses must be below 2^16.
uint160 constant MAX_SYSTEM_CONTRACT_ADDRESS = 0xffff; // 2^16 - 1
address constant ECRECOVER_SYSTEM_CONTRACT = address(0x01);
address constant SHA256_SYSTEM_CONTRACT = address(0x02);
/// @dev The current maximum deployed precompile address.
/// Note: currently only two precompiles are deployed:
/// 0x01 - ecrecover
/// 0x02 - sha256
/// Important! So the constant should be updated if more precompiles are deployed.
uint256 constant CURRENT_MAX_PRECOMPILE_ADDRESS = uint256(uint160(SHA256_SYSTEM_CONTRACT));
address payable constant BOOTLOADER_FORMAL_ADDRESS = payable(address(SYSTEM_CONTRACTS_OFFSET + 0x01));
IAccountCodeStorage constant ACCOUNT_CODE_STORAGE_SYSTEM_CONTRACT = IAccountCodeStorage(
address(SYSTEM_CONTRACTS_OFFSET + 0x02)
);
INonceHolder constant NONCE_HOLDER_SYSTEM_CONTRACT = INonceHolder(address(SYSTEM_CONTRACTS_OFFSET + 0x03));
IKnownCodesStorage constant KNOWN_CODE_STORAGE_CONTRACT = IKnownCodesStorage(address(SYSTEM_CONTRACTS_OFFSET + 0x04));
IImmutableSimulator constant IMMUTABLE_SIMULATOR_SYSTEM_CONTRACT = IImmutableSimulator(
address(SYSTEM_CONTRACTS_OFFSET + 0x05)
);
IContractDeployer constant DEPLOYER_SYSTEM_CONTRACT = IContractDeployer(address(SYSTEM_CONTRACTS_OFFSET + 0x06));
// A contract that is allowed to deploy any codehash
// on any address. To be used only during an upgrade.
address constant FORCE_DEPLOYER = address(SYSTEM_CONTRACTS_OFFSET + 0x07);
IL1Messenger constant L1_MESSENGER_CONTRACT = IL1Messenger(address(SYSTEM_CONTRACTS_OFFSET + 0x08));
address constant MSG_VALUE_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x09);
IEthToken constant ETH_TOKEN_SYSTEM_CONTRACT = IEthToken(address(SYSTEM_CONTRACTS_OFFSET + 0x0a));
address constant KECCAK256_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x10);
ISystemContext constant SYSTEM_CONTEXT_CONTRACT = ISystemContext(payable(address(SYSTEM_CONTRACTS_OFFSET + 0x0b)));
BootloaderUtilities constant BOOTLOADER_UTILITIES = BootloaderUtilities(address(SYSTEM_CONTRACTS_OFFSET + 0x0c));
address constant EVENT_WRITER_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x0d);
IBytecodeCompressor constant BYTECODE_COMPRESSOR_CONTRACT = IBytecodeCompressor(
address(SYSTEM_CONTRACTS_OFFSET + 0x0e)
);
/// @dev If the bitwise AND of the extraAbi[2] param when calling the MSG_VALUE_SIMULATOR
/// is non-zero, the call will be assumed to be a system one.
uint256 constant MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT = 1;
/// @dev The maximal msg.value that context can have
uint256 constant MAX_MSG_VALUE = 2 ** 128 - 1;
/// @dev Prefix used during derivation of account addresses using CREATE2
/// @dev keccak256("zksyncCreate2")
bytes32 constant CREATE2_PREFIX = 0x2020dba91b30cc0006188af794c2fb30dd8520db7e2c088b7fc7c103c00ca494;
/// @dev Prefix used during derivation of account addresses using CREATE
/// @dev keccak256("zksyncCreate")
bytes32 constant CREATE_PREFIX = 0x63bae3a9951d38e8a3fbb7b70909afc1200610fc5bc55ade242f815974674f23;
// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity ^0.8.0;
import "./SystemContractHelper.sol";
import "./Utils.sol";
import {SHA256_SYSTEM_CONTRACT, KECCAK256_SYSTEM_CONTRACT} from "../Constants.sol";
/**
* @author Matter Labs
* @notice This library is used to perform ultra-efficient calls using zkEVM-specific features.
* @dev EVM calls always accept a memory slice as input and return a memory slice as output.
* Therefore, even if the user has a ready-made calldata slice, they still need to copy it to memory
* before calling. This is especially inefficient for large inputs (proxies, multi-calls, etc.).
* In turn, zkEVM operates over a fat pointer, which is a set of (memory page, offset, start, length) in the memory/calldata/returndata.
* This allows forwarding the calldata slice as is, without copying it to memory.
* @dev Fat pointer is not just an integer, it is an extended data type supported on the VM level.
* zkEVM creates the wellformed fat pointers for all the calldata/returndata regions, later
* the contract may manipulate the already created fat pointers to forward a slice of the data, but not
* to create new fat pointers!
* @dev The allowed operation on fat pointers are:
* 1. `ptr.add` - Transforms `ptr.offset` into `ptr.offset + u32(_value)`. If overflow happens then it panics.
* 2. `ptr.sub` - Transforms `ptr.offset` into `ptr.offset - u32(_value)`. If underflow happens then it panics.
* 3. `ptr.pack` - Do the concatenation between the lowest 128 bits of the pointer itself and the highest 128 bits of `_value`. It is typically used to prepare the ABI for external calls.
* 4. `ptr.shrink` - Transforms `ptr.length` into `ptr.length - u32(_shrink)`. If underflow happens then it panics.
* @dev The call opcodes accept the fat pointer and change it to its canonical form before passing it to the child call
* 1. `ptr.start` is transformed into `ptr.offset + ptr.start`
* 2. `ptr.length` is transformed into `ptr.length - ptr.offset`
* 3. `ptr.offset` is transformed into `0`
*/
library EfficientCall {
/// @notice Call the `keccak256` without copying calldata to memory.
/// @param _data The preimage data.
/// @return The `keccak256` hash.
function keccak(bytes calldata _data) internal view returns (bytes32) {
bytes memory returnData = staticCall(gasleft(), KECCAK256_SYSTEM_CONTRACT, _data);
require(returnData.length == 32, "keccak256 returned invalid data");
return bytes32(returnData);
}
/// @notice Call the `sha256` precompile without copying calldata to memory.
/// @param _data The preimage data.
/// @return The `sha256` hash.
function sha(bytes calldata _data) internal view returns (bytes32) {
bytes memory returnData = staticCall(gasleft(), SHA256_SYSTEM_CONTRACT, _data);
require(returnData.length == 32, "sha returned invalid data");
return bytes32(returnData);
}
/// @notice Perform a `call` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _value The `msg.value` to send.
/// @param _data The calldata to use for the call.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return returnData The copied to memory return data.
function call(
uint256 _gas,
address _address,
uint256 _value,
bytes calldata _data,
bool _isSystem
) internal returns (bytes memory returnData) {
bool success = rawCall(_gas, _address, _value, _data, _isSystem);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `staticCall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return returnData The copied to memory return data.
function staticCall(
uint256 _gas,
address _address,
bytes calldata _data
) internal view returns (bytes memory returnData) {
bool success = rawStaticCall(_gas, _address, _data);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `delegateCall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return returnData The copied to memory return data.
function delegateCall(
uint256 _gas,
address _address,
bytes calldata _data
) internal returns (bytes memory returnData) {
bool success = rawDelegateCall(_gas, _address, _data);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `mimicCall` (a call with custom msg.sender) without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @param _whoToMimic The `msg.sender` for the next call.
/// @param _isConstructor Whether the call should contain the `isConstructor` flag.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return returnData The copied to memory return data.
function mimicCall(
uint256 _gas,
address _address,
bytes calldata _data,
address _whoToMimic,
bool _isConstructor,
bool _isSystem
) internal returns (bytes memory returnData) {
bool success = rawMimicCall(_gas, _address, _data, _whoToMimic, _isConstructor, _isSystem);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `call` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _value The `msg.value` to send.
/// @param _data The calldata to use for the call.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return success whether the call was successful.
function rawCall(
uint256 _gas,
address _address,
uint256 _value,
bytes calldata _data,
bool _isSystem
) internal returns (bool success) {
if (_value == 0) {
_loadFarCallABIIntoActivePtr(_gas, _data, false, _isSystem);
address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
assembly {
success := call(_address, callAddr, 0, 0, 0xFFFF, 0, 0)
}
} else {
_loadFarCallABIIntoActivePtr(_gas, _data, false, true);
// If there is provided `msg.value` call the `MsgValueSimulator` to forward ether.
address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT;
address callAddr = SYSTEM_CALL_BY_REF_CALL_ADDRESS;
// We need to supply the mask to the MsgValueSimulator to denote
// that the call should be a system one.
uint256 forwardMask = _isSystem ? MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT : 0;
assembly {
success := call(msgValueSimulator, callAddr, _value, _address, 0xFFFF, forwardMask, 0)
}
}
}
/// @notice Perform a `staticCall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return success whether the call was successful.
function rawStaticCall(uint256 _gas, address _address, bytes calldata _data) internal view returns (bool success) {
_loadFarCallABIIntoActivePtr(_gas, _data, false, false);
address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
assembly {
success := staticcall(_address, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Perform a `delegatecall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return success whether the call was successful.
function rawDelegateCall(uint256 _gas, address _address, bytes calldata _data) internal returns (bool success) {
_loadFarCallABIIntoActivePtr(_gas, _data, false, false);
address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
assembly {
success := delegatecall(_address, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Perform a `mimicCall` (call with custom msg.sender) without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @param _whoToMimic The `msg.sender` for the next call.
/// @param _isConstructor Whether the call should contain the `isConstructor` flag.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return success whether the call was successful.
/// @dev If called not in kernel mode, it will result in a revert (enforced by the VM)
function rawMimicCall(
uint256 _gas,
address _address,
bytes calldata _data,
address _whoToMimic,
bool _isConstructor,
bool _isSystem
) internal returns (bool success) {
_loadFarCallABIIntoActivePtr(_gas, _data, _isConstructor, _isSystem);
address callAddr = MIMIC_CALL_BY_REF_CALL_ADDRESS;
uint256 cleanupMask = ADDRESS_MASK;
assembly {
// Clearing values before usage in assembly, since Solidity
// doesn't do it by default
_whoToMimic := and(_whoToMimic, cleanupMask)
success := call(_address, callAddr, 0, 0, _whoToMimic, 0, 0)
}
}
/// @dev Verify that a low-level call was successful, and revert if it wasn't, by bubbling the revert reason.
/// @param _success Whether the call was successful.
/// @return returnData The copied to memory return data.
function _verifyCallResult(bool _success) private pure returns (bytes memory returnData) {
if (_success) {
uint256 size;
assembly {
size := returndatasize()
}
returnData = new bytes(size);
assembly {
returndatacopy(add(returnData, 0x20), 0, size)
}
} else {
propagateRevert();
}
}
/// @dev Propagate the revert reason from the current call to the caller.
function propagateRevert() internal pure {
assembly {
let size := returndatasize()
returndatacopy(0, 0, size)
revert(0, size)
}
}
/// @dev Load the far call ABI into active ptr, that will be used for the next call by reference.
/// @param _gas The gas to be passed to the call.
/// @param _data The calldata to be passed to the call.
/// @param _isConstructor Whether the call is a constructor call.
/// @param _isSystem Whether the call is a system call.
function _loadFarCallABIIntoActivePtr(
uint256 _gas,
bytes calldata _data,
bool _isConstructor,
bool _isSystem
) private view {
SystemContractHelper.loadCalldataIntoActivePtr();
// Currently, zkEVM considers the pointer valid if(ptr.offset < ptr.length || (ptr.length == 0 && ptr.offset == 0)), otherwise panics.
// So, if the data is empty we need to make the `ptr.length = ptr.offset = 0`, otherwise follow standard logic.
if (_data.length == 0) {
// Safe to cast, offset is never bigger than `type(uint32).max`
SystemContractHelper.ptrShrinkIntoActive(uint32(msg.data.length));
} else {
uint256 dataOffset;
assembly {
dataOffset := _data.offset
}
// Safe to cast, offset is never bigger than `type(uint32).max`
SystemContractHelper.ptrAddIntoActive(uint32(dataOffset));
// Safe to cast, `data.length` is never bigger than `type(uint32).max`
uint32 shrinkTo = uint32(msg.data.length - (_data.length + dataOffset));
SystemContractHelper.ptrShrinkIntoActive(shrinkTo);
}
uint32 gas = Utils.safeCastToU32(_gas);
uint256 farCallAbi = SystemContractsCaller.getFarCallABIWithEmptyFatPointer(
gas,
// Only rollup is supported for now
0,
CalldataForwardingMode.ForwardFatPointer,
_isConstructor,
_isSystem
);
SystemContractHelper.ptrPackIntoActivePtr(farCallAbi);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../libraries/TransactionHelper.sol";
enum ExecutionResult {
Revert,
Success
}
bytes4 constant PAYMASTER_VALIDATION_SUCCESS_MAGIC = IPaymaster.validateAndPayForPaymasterTransaction.selector;
interface IPaymaster {
/// @dev Called by the bootloader to verify that the paymaster agrees to pay for the
/// fee for the transaction. This transaction should also send the necessary amount of funds onto the bootloader
/// address.
/// @param _txHash The hash of the transaction
/// @param _suggestedSignedHash The hash of the transaction that is signed by an EOA
/// @param _transaction The transaction itself.
/// @return magic The value that should be equal to the signature of the validateAndPayForPaymasterTransaction
/// if the paymaster agrees to pay for the transaction.
/// @return context The "context" of the transaction: an array of bytes of length at most 1024 bytes, which will be
/// passed to the `postTransaction` method of the account.
/// @dev The developer should strive to preserve as many steps as possible both for valid
/// and invalid transactions as this very method is also used during the gas fee estimation
/// (without some of the necessary data, e.g. signature).
function validateAndPayForPaymasterTransaction(
bytes32 _txHash,
bytes32 _suggestedSignedHash,
Transaction calldata _transaction
) external payable returns (bytes4 magic, bytes memory context);
/// @dev Called by the bootloader after the execution of the transaction. Please note that
/// there is no guarantee that this method will be called at all. Unlike the original EIP4337,
/// this method won't be called if the transaction execution results in out-of-gas.
/// @param _context, the context of the execution, returned by the "validateAndPayForPaymasterTransaction" method.
/// @param _transaction, the users' transaction.
/// @param _txResult, the result of the transaction execution (success or failure).
/// @param _maxRefundedGas, the upper bound on the amout of gas that could be refunded to the paymaster.
/// @dev The exact amount refunded depends on the gas spent by the "postOp" itself and so the developers should
/// take that into account.
function postTransaction(
bytes calldata _context,
Transaction calldata _transaction,
bytes32 _txHash,
bytes32 _suggestedSignedHash,
ExecutionResult _txResult,
uint256 _maxRefundedGas
) external payable;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8;
import {MSG_VALUE_SYSTEM_CONTRACT, MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT} from "../Constants.sol";
import "./Utils.sol";
// Addresses used for the compiler to be replaced with the
// zkSync-specific opcodes during the compilation.
// IMPORTANT: these are just compile-time constants and are used
// only if used in-place by Yul optimizer.
address constant TO_L1_CALL_ADDRESS = address((1 << 16) - 1);
address constant CODE_ADDRESS_CALL_ADDRESS = address((1 << 16) - 2);
address constant PRECOMPILE_CALL_ADDRESS = address((1 << 16) - 3);
address constant META_CALL_ADDRESS = address((1 << 16) - 4);
address constant MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 5);
address constant SYSTEM_MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 6);
address constant MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 7);
address constant SYSTEM_MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 8);
address constant RAW_FAR_CALL_CALL_ADDRESS = address((1 << 16) - 9);
address constant RAW_FAR_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 10);
address constant SYSTEM_CALL_CALL_ADDRESS = address((1 << 16) - 11);
address constant SYSTEM_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 12);
address constant SET_CONTEXT_VALUE_CALL_ADDRESS = address((1 << 16) - 13);
address constant SET_PUBDATA_PRICE_CALL_ADDRESS = address((1 << 16) - 14);
address constant INCREMENT_TX_COUNTER_CALL_ADDRESS = address((1 << 16) - 15);
address constant PTR_CALLDATA_CALL_ADDRESS = address((1 << 16) - 16);
address constant CALLFLAGS_CALL_ADDRESS = address((1 << 16) - 17);
address constant PTR_RETURNDATA_CALL_ADDRESS = address((1 << 16) - 18);
address constant EVENT_INITIALIZE_ADDRESS = address((1 << 16) - 19);
address constant EVENT_WRITE_ADDRESS = address((1 << 16) - 20);
address constant LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 21);
address constant LOAD_LATEST_RETURNDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 22);
address constant PTR_ADD_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 23);
address constant PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 24);
address constant PTR_PACK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 25);
address constant MULTIPLICATION_HIGH_ADDRESS = address((1 << 16) - 26);
address constant GET_EXTRA_ABI_DATA_ADDRESS = address((1 << 16) - 27);
// All the offsets are in bits
uint256 constant META_GAS_PER_PUBDATA_BYTE_OFFSET = 0 * 8;
uint256 constant META_HEAP_SIZE_OFFSET = 8 * 8;
uint256 constant META_AUX_HEAP_SIZE_OFFSET = 12 * 8;
uint256 constant META_SHARD_ID_OFFSET = 28 * 8;
uint256 constant META_CALLER_SHARD_ID_OFFSET = 29 * 8;
uint256 constant META_CODE_SHARD_ID_OFFSET = 30 * 8;
/// @notice The way to forward the calldata:
/// - Use the current heap (i.e. the same as on EVM).
/// - Use the auxiliary heap.
/// - Forward via a pointer
/// @dev Note, that currently, users do not have access to the auxiliary
/// heap and so the only type of forwarding that will be used by the users
/// are UseHeap and ForwardFatPointer for forwarding a slice of the current calldata
/// to the next call.
enum CalldataForwardingMode {
UseHeap,
ForwardFatPointer,
UseAuxHeap
}
/**
* @author Matter Labs
* @notice A library that allows calling contracts with the `isSystem` flag.
* @dev It is needed to call ContractDeployer and NonceHolder.
*/
library SystemContractsCaller {
/// @notice Makes a call with the `isSystem` flag.
/// @param gasLimit The gas limit for the call.
/// @param to The address to call.
/// @param value The value to pass with the transaction.
/// @param data The calldata.
/// @return success Whether the transaction has been successful.
/// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
function systemCall(uint32 gasLimit, address to, uint256 value, bytes memory data) internal returns (bool success) {
address callAddr = SYSTEM_CALL_CALL_ADDRESS;
uint32 dataStart;
assembly {
dataStart := add(data, 0x20)
}
uint32 dataLength = uint32(Utils.safeCastToU32(data.length));
uint256 farCallAbi = SystemContractsCaller.getFarCallABI(
0,
0,
dataStart,
dataLength,
gasLimit,
// Only rollup is supported for now
0,
CalldataForwardingMode.UseHeap,
false,
true
);
if (value == 0) {
// Doing the system call directly
assembly {
success := call(to, callAddr, 0, 0, farCallAbi, 0, 0)
}
} else {
address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT;
// We need to supply the mask to the MsgValueSimulator to denote
// that the call should be a system one.
uint256 forwardMask = MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT;
assembly {
success := call(msgValueSimulator, callAddr, value, to, farCallAbi, forwardMask, 0)
}
}
}
/// @notice Makes a call with the `isSystem` flag.
/// @param gasLimit The gas limit for the call.
/// @param to The address to call.
/// @param value The value to pass with the transaction.
/// @param data The calldata.
/// @return success Whether the transaction has been successful.
/// @return returnData The returndata of the transaction (revert reason in case the transaction has failed).
/// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
function systemCallWithReturndata(
uint32 gasLimit,
address to,
uint128 value,
bytes memory data
) internal returns (bool success, bytes memory returnData) {
success = systemCall(gasLimit, to, value, data);
uint256 size;
assembly {
size := returndatasize()
}
returnData = new bytes(size);
assembly {
returndatacopy(add(returnData, 0x20), 0, size)
}
}
/// @notice Makes a call with the `isSystem` flag.
/// @param gasLimit The gas limit for the call.
/// @param to The address to call.
/// @param value The value to pass with the transaction.
/// @param data The calldata.
/// @return returnData The returndata of the transaction. In case the transaction reverts, the error
/// bubbles up to the parent frame.
/// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
function systemCallWithPropagatedRevert(
uint32 gasLimit,
address to,
uint128 value,
bytes memory data
) internal returns (bytes memory returnData) {
bool success;
(success, returnData) = systemCallWithReturndata(gasLimit, to, value, data);
if (!success) {
assembly {
let size := mload(returnData)
revert(add(returnData, 0x20), size)
}
}
}
/// @notice Calculates the packed representation of the FarCallABI.
/// @param dataOffset Calldata offset in memory. Provide 0 unless using custom pointer.
/// @param memoryPage Memory page to use. Provide 0 unless using custom pointer.
/// @param dataStart The start of the calldata slice. Provide the offset in memory
/// if not using custom pointer.
/// @param dataLength The calldata length. Provide the length of the calldata in bytes
/// unless using custom pointer.
/// @param gasPassed The gas to pass with the call.
/// @param shardId Of the account to call. Currently only 0 is supported.
/// @param forwardingMode The forwarding mode to use:
/// - provide CalldataForwardingMode.UseHeap when using your current memory
/// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer.
/// @param isConstructorCall Whether the call will be a call to the constructor
/// (ignored when the caller is not a system contract).
/// @param isSystemCall Whether the call will have the `isSystem` flag.
/// @return farCallAbi The far call ABI.
/// @dev The `FarCallABI` has the following structure:
/// pub struct FarCallABI {
/// pub memory_quasi_fat_pointer: FatPointer,
/// pub gas_passed: u32,
/// pub shard_id: u8,
/// pub forwarding_mode: FarCallForwardPageType,
/// pub constructor_call: bool,
/// pub to_system: bool,
/// }
///
/// The FatPointer struct:
///
/// pub struct FatPointer {
/// pub offset: u32, // offset relative to `start`
/// pub memory_page: u32, // memory page where slice is located
/// pub start: u32, // absolute start of the slice
/// pub length: u32, // length of the slice
/// }
///
/// @dev Note, that the actual layout is the following:
///
/// [0..32) bits -- the calldata offset
/// [32..64) bits -- the memory page to use. Can be left blank in most of the cases.
/// [64..96) bits -- the absolute start of the slice
/// [96..128) bits -- the length of the slice.
/// [128..192) bits -- empty bits.
/// [192..224) bits -- gasPassed.
/// [224..232) bits -- forwarding_mode
/// [232..240) bits -- shard id.
/// [240..248) bits -- constructor call flag
/// [248..256] bits -- system call flag
function getFarCallABI(
uint32 dataOffset,
uint32 memoryPage,
uint32 dataStart,
uint32 dataLength,
uint32 gasPassed,
uint8 shardId,
CalldataForwardingMode forwardingMode,
bool isConstructorCall,
bool isSystemCall
) internal pure returns (uint256 farCallAbi) {
// Fill in the call parameter fields
farCallAbi = getFarCallABIWithEmptyFatPointer(
gasPassed,
shardId,
forwardingMode,
isConstructorCall,
isSystemCall
);
// Fill in the fat pointer fields
farCallAbi |= dataOffset;
farCallAbi |= (uint256(memoryPage) << 32);
farCallAbi |= (uint256(dataStart) << 64);
farCallAbi |= (uint256(dataLength) << 96);
}
/// @notice Calculates the packed representation of the FarCallABI with zero fat pointer fields.
/// @param gasPassed The gas to pass with the call.
/// @param shardId Of the account to call. Currently only 0 is supported.
/// @param forwardingMode The forwarding mode to use:
/// - provide CalldataForwardingMode.UseHeap when using your current memory
/// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer.
/// @param isConstructorCall Whether the call will be a call to the constructor
/// (ignored when the caller is not a system contract).
/// @param isSystemCall Whether the call will have the `isSystem` flag.
/// @return farCallAbiWithEmptyFatPtr The far call ABI with zero fat pointer fields.
function getFarCallABIWithEmptyFatPointer(
uint32 gasPassed,
uint8 shardId,
CalldataForwardingMode forwardingMode,
bool isConstructorCall,
bool isSystemCall
) internal pure returns (uint256 farCallAbiWithEmptyFatPtr) {
farCallAbiWithEmptyFatPtr |= (uint256(gasPassed) << 192);
farCallAbiWithEmptyFatPtr |= (uint256(forwardingMode) << 224);
farCallAbiWithEmptyFatPtr |= (uint256(shardId) << 232);
if (isConstructorCall) {
farCallAbiWithEmptyFatPtr |= (1 << 240);
}
if (isSystemCall) {
farCallAbiWithEmptyFatPtr |= (1 << 248);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../openzeppelin/token/ERC20/IERC20.sol";
import "../openzeppelin/token/ERC20/utils/SafeERC20.sol";
import "../interfaces/IPaymasterFlow.sol";
import "../interfaces/IContractDeployer.sol";
import {ETH_TOKEN_SYSTEM_CONTRACT, BOOTLOADER_FORMAL_ADDRESS} from "../Constants.sol";
import "./RLPEncoder.sol";
import "./EfficientCall.sol";
/// @dev The type id of zkSync's EIP-712-signed transaction.
uint8 constant EIP_712_TX_TYPE = 0x71;
/// @dev The type id of legacy transactions.
uint8 constant LEGACY_TX_TYPE = 0x0;
/// @dev The type id of legacy transactions.
uint8 constant EIP_2930_TX_TYPE = 0x01;
/// @dev The type id of EIP1559 transactions.
uint8 constant EIP_1559_TX_TYPE = 0x02;
/// @notice Structure used to represent zkSync transaction.
struct Transaction {
// The type of the transaction.
uint256 txType;
// The caller.
uint256 from;
// The callee.
uint256 to;
// The gasLimit to pass with the transaction.
// It has the same meaning as Ethereum's gasLimit.
uint256 gasLimit;
// The maximum amount of gas the user is willing to pay for a byte of pubdata.
uint256 gasPerPubdataByteLimit;
// The maximum fee per gas that the user is willing to pay.
// It is akin to EIP1559's maxFeePerGas.
uint256 maxFeePerGas;
// The maximum priority fee per gas that the user is willing to pay.
// It is akin to EIP1559's maxPriorityFeePerGas.
uint256 maxPriorityFeePerGas;
// The transaction's paymaster. If there is no paymaster, it is equal to 0.
uint256 paymaster;
// The nonce of the transaction.
uint256 nonce;
// The value to pass with the transaction.
uint256 value;
// In the future, we might want to add some
// new fields to the struct. The `txData` struct
// is to be passed to account and any changes to its structure
// would mean a breaking change to these accounts. In order to prevent this,
// we should keep some fields as "reserved".
// It is also recommended that their length is fixed, since
// it would allow easier proof integration (in case we will need
// some special circuit for preprocessing transactions).
uint256[4] reserved;
// The transaction's calldata.
bytes data;
// The signature of the transaction.
bytes signature;
// The properly formatted hashes of bytecodes that must be published on L1
// with the inclusion of this transaction. Note, that a bytecode has been published
// before, the user won't pay fees for its republishing.
bytes32[] factoryDeps;
// The input to the paymaster.
bytes paymasterInput;
// Reserved dynamic type for the future use-case. Using it should be avoided,
// But it is still here, just in case we want to enable some additional functionality.
bytes reservedDynamic;
}
/**
* @author Matter Labs
* @notice Library is used to help custom accounts to work with common methods for the Transaction type.
*/
library TransactionHelper {
using SafeERC20 for IERC20;
/// @notice The EIP-712 typehash for the contract's domain
bytes32 constant EIP712_DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,string version,uint256 chainId)");
bytes32 constant EIP712_TRANSACTION_TYPE_HASH =
keccak256(
"Transaction(uint256 txType,uint256 from,uint256 to,uint256 gasLimit,uint256 gasPerPubdataByteLimit,uint256 maxFeePerGas,uint256 maxPriorityFeePerGas,uint256 paymaster,uint256 nonce,uint256 value,bytes data,bytes32[] factoryDeps,bytes paymasterInput)"
);
/// @notice Whether the token is Ethereum.
/// @param _addr The address of the token
/// @return `true` or `false` based on whether the token is Ether.
/// @dev This method assumes that address is Ether either if the address is 0 (for convenience)
/// or if the address is the address of the L2EthToken system contract.
function isEthToken(uint256 _addr) internal pure returns (bool) {
return _addr == uint256(uint160(address(ETH_TOKEN_SYSTEM_CONTRACT))) || _addr == 0;
}
/// @notice Calculate the suggested signed hash of the transaction,
/// i.e. the hash that is signed by EOAs and is recommended to be signed by other accounts.
function encodeHash(Transaction calldata _transaction) internal view returns (bytes32 resultHash) {
if (_transaction.txType == LEGACY_TX_TYPE) {
resultHash = _encodeHashLegacyTransaction(_transaction);
} else if (_transaction.txType == EIP_712_TX_TYPE) {
resultHash = _encodeHashEIP712Transaction(_transaction);
} else if (_transaction.txType == EIP_1559_TX_TYPE) {
resultHash = _encodeHashEIP1559Transaction(_transaction);
} else if (_transaction.txType == EIP_2930_TX_TYPE) {
resultHash = _encodeHashEIP2930Transaction(_transaction);
} else {
// Currently no other transaction types are supported.
// Any new transaction types will be processed in a similar manner.
revert("Encoding unsupported tx");
}
}
/// @notice Encode hash of the zkSync native transaction type.
/// @return keccak256 hash of the EIP-712 encoded representation of transaction
function _encodeHashEIP712Transaction(Transaction calldata _transaction) private view returns (bytes32) {
bytes32 structHash = keccak256(
abi.encode(
EIP712_TRANSACTION_TYPE_HASH,
_transaction.txType,
_transaction.from,
_transaction.to,
_transaction.gasLimit,
_transaction.gasPerPubdataByteLimit,
_transaction.maxFeePerGas,
_transaction.maxPriorityFeePerGas,
_transaction.paymaster,
_transaction.nonce,
_transaction.value,
EfficientCall.keccak(_transaction.data),
keccak256(abi.encodePacked(_transaction.factoryDeps)),
EfficientCall.keccak(_transaction.paymasterInput)
)
);
bytes32 domainSeparator = keccak256(
abi.encode(EIP712_DOMAIN_TYPEHASH, keccak256("zkSync"), keccak256("2"), block.chainid)
);
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
/// @notice Encode hash of the legacy transaction type.
/// @return keccak256 of the serialized RLP encoded representation of transaction
function _encodeHashLegacyTransaction(Transaction calldata _transaction) private view returns (bytes32) {
// Hash of legacy transactions are encoded as one of the:
// - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0)
// - RLP(nonce, gasPrice, gasLimit, to, value, data)
//
// In this RLP encoding, only the first one above list appears, so we encode each element
// inside list and then concatenate the length of all elements with them.
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
// Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error".
bytes memory encodedGasParam;
{
bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit);
}
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// Encode `chainId` according to EIP-155, but only if the `chainId` is specified in the transaction.
bytes memory encodedChainId;
if (_transaction.reserved[0] != 0) {
encodedChainId = bytes.concat(RLPEncoder.encodeUint256(block.chainid), hex"80_80");
}
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedNonce.length +
encodedGasParam.length +
encodedTo.length +
encodedValue.length +
encodedDataLength.length +
_transaction.data.length +
encodedChainId.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
encodedListLength,
encodedNonce,
encodedGasParam,
encodedTo,
encodedValue,
encodedDataLength,
_transaction.data,
encodedChainId
)
);
}
/// @notice Encode hash of the EIP2930 transaction type.
/// @return keccak256 of the serialized RLP encoded representation of transaction
function _encodeHashEIP2930Transaction(Transaction calldata _transaction) private view returns (bytes32) {
// Hash of EIP2930 transactions is encoded the following way:
// H(0x01 || RLP(chain_id, nonce, gas_price, gas_limit, destination, amount, data, access_list))
//
// Note, that on zkSync access lists are not supported and should always be empty.
// Encode all fixed-length params to avoid "stack too deep error"
bytes memory encodedFixedLengthParams;
{
bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
encodedFixedLengthParams = bytes.concat(
encodedChainId,
encodedNonce,
encodedGasPrice,
encodedGasLimit,
encodedTo,
encodedValue
);
}
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// On zkSync, access lists are always zero length (at least for now).
bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedFixedLengthParams.length +
encodedDataLength.length +
_transaction.data.length +
encodedAccessListLength.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
"\x01",
encodedListLength,
encodedFixedLengthParams,
encodedDataLength,
_transaction.data,
encodedAccessListLength
)
);
}
/// @notice Encode hash of the EIP1559 transaction type.
/// @return keccak256 of the serialized RLP encoded representation of transaction
function _encodeHashEIP1559Transaction(Transaction calldata _transaction) private view returns (bytes32) {
// Hash of EIP1559 transactions is encoded the following way:
// H(0x02 || RLP(chain_id, nonce, max_priority_fee_per_gas, max_fee_per_gas, gas_limit, destination, amount, data, access_list))
//
// Note, that on zkSync access lists are not supported and should always be empty.
// Encode all fixed-length params to avoid "stack too deep error"
bytes memory encodedFixedLengthParams;
{
bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas);
bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
encodedFixedLengthParams = bytes.concat(
encodedChainId,
encodedNonce,
encodedMaxPriorityFeePerGas,
encodedMaxFeePerGas,
encodedGasLimit,
encodedTo,
encodedValue
);
}
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// On zkSync, access lists are always zero length (at least for now).
bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedFixedLengthParams.length +
encodedDataLength.length +
_transaction.data.length +
encodedAccessListLength.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
"\x02",
encodedListLength,
encodedFixedLengthParams,
encodedDataLength,
_transaction.data,
encodedAccessListLength
)
);
}
/// @notice Processes the common paymaster flows, e.g. setting proper allowance
/// for tokens, etc. For more information on the expected behavior, check out
/// the "Paymaster flows" section in the documentation.
function processPaymasterInput(Transaction calldata _transaction) internal {
require(_transaction.paymasterInput.length >= 4, "The standard paymaster input must be at least 4 bytes long");
bytes4 paymasterInputSelector = bytes4(_transaction.paymasterInput[0:4]);
if (paymasterInputSelector == IPaymasterFlow.approvalBased.selector) {
require(
_transaction.paymasterInput.length >= 68,
"The approvalBased paymaster input must be at least 68 bytes long"
);
// While the actual data consists of address, uint256 and bytes data,
// the data is needed only for the paymaster, so we ignore it here for the sake of optimization
(address token, uint256 minAllowance) = abi.decode(_transaction.paymasterInput[4:68], (address, uint256));
address paymaster = address(uint160(_transaction.paymaster));
uint256 currentAllowance = IERC20(token).allowance(address(this), paymaster);
if (currentAllowance < minAllowance) {
// Some tokens, e.g. USDT require that the allowance is firsty set to zero
// and only then updated to the new value.
IERC20(token).safeApprove(paymaster, 0);
IERC20(token).safeApprove(paymaster, minAllowance);
}
} else if (paymasterInputSelector == IPaymasterFlow.general.selector) {
// Do nothing. general(bytes) paymaster flow means that the paymaster must interpret these bytes on his own.
} else {
revert("Unsupported paymaster flow");
}
}
/// @notice Pays the required fee for the transaction to the bootloader.
/// @dev Currently it pays the maximum amount "_transaction.maxFeePerGas * _transaction.gasLimit",
/// it will change in the future.
function payToTheBootloader(Transaction calldata _transaction) internal returns (bool success) {
address bootloaderAddr = BOOTLOADER_FORMAL_ADDRESS;
uint256 amount = _transaction.maxFeePerGas * _transaction.gasLimit;
assembly {
success := call(gas(), bootloaderAddr, amount, 0, 0, 0, 0)
}
}
// Returns the balance required to process the transaction.
function totalRequiredBalance(Transaction calldata _transaction) internal pure returns (uint256 requiredBalance) {
if (address(uint160(_transaction.paymaster)) != address(0)) {
// Paymaster pays for the fee
requiredBalance = _transaction.value;
} else {
// The user should have enough balance for both the fee and the value of the transaction
requiredBalance = _transaction.maxFeePerGas * _transaction.gasLimit + _transaction.value;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @author Matter Labs
* @dev Interface of the nonce holder contract -- a contract used by the system to ensure
* that there is always a unique identifier for a transaction with a particular account (we call it nonce).
* In other words, the pair of (address, nonce) should always be unique.
* @dev Custom accounts should use methods of this contract to store nonces or other possible unique identifiers
* for the transaction.
*/
interface INonceHolder {
event ValueSetUnderNonce(address indexed accountAddress, uint256 indexed key, uint256 value);
/// @dev Returns the current minimal nonce for account.
function getMinNonce(address _address) external view returns (uint256);
/// @dev Returns the raw version of the current minimal nonce
/// (equal to minNonce + 2^128 * deployment nonce).
function getRawNonce(address _address) external view returns (uint256);
/// @dev Increases the minimal nonce for the msg.sender.
function increaseMinNonce(uint256 _value) external returns (uint256);
/// @dev Sets the nonce value `key` as used.
function setValueUnderNonce(uint256 _key, uint256 _value) external;
/// @dev Gets the value stored inside a custom nonce.
function getValueUnderNonce(uint256 _key) external view returns (uint256);
/// @dev A convenience method to increment the minimal nonce if it is equal
/// to the `_expectedNonce`.
function incrementMinNonceIfEquals(uint256 _expectedNonce) external;
/// @dev Returns the deployment nonce for the accounts used for CREATE opcode.
function getDeploymentNonce(address _address) external view returns (uint256);
/// @dev Increments the deployment nonce for the account and returns the previous one.
function incrementDeploymentNonce(address _address) external returns (uint256);
/// @dev Determines whether a certain nonce has been already used for an account.
function validateNonceUsage(address _address, uint256 _key, bool _shouldBeUsed) external view;
/// @dev Returns whether a nonce has been used for an account.
function isNonceUsed(address _address, uint256 _nonce) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IContractDeployer {
/// @notice Defines the version of the account abstraction protocol
/// that a contract claims to follow.
/// - `None` means that the account is just a contract and it should never be interacted
/// with as a custom account
/// - `Version1` means that the account follows the first version of the account abstraction protocol
enum AccountAbstractionVersion {
None,
Version1
}
/// @notice Defines the nonce ordering used by the account
/// - `Sequential` means that it is expected that the nonces are monotonic and increment by 1
/// at a time (the same as EOAs).
/// - `Arbitrary` means that the nonces for the accounts can be arbitrary. The operator
/// should serve the transactions from such an account on a first-come-first-serve basis.
/// @dev This ordering is more of a suggestion to the operator on how the AA expects its transactions
/// to be processed and is not considered as a system invariant.
enum AccountNonceOrdering {
Sequential,
Arbitrary
}
struct AccountInfo {
AccountAbstractionVersion supportedAAVersion;
AccountNonceOrdering nonceOrdering;
}
event ContractDeployed(
address indexed deployerAddress,
bytes32 indexed bytecodeHash,
address indexed contractAddress
);
event AccountNonceOrderingUpdated(address indexed accountAddress, AccountNonceOrdering nonceOrdering);
event AccountVersionUpdated(address indexed accountAddress, AccountAbstractionVersion aaVersion);
function getNewAddressCreate2(
address _sender,
bytes32 _bytecodeHash,
bytes32 _salt,
bytes calldata _input
) external view returns (address newAddress);
function getNewAddressCreate(address _sender, uint256 _senderNonce) external pure returns (address newAddress);
function create2(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input
) external payable returns (address newAddress);
function create2Account(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input,
AccountAbstractionVersion _aaVersion
) external payable returns (address newAddress);
/// @dev While the `_salt` parameter is not used anywhere here,
/// it is still needed for consistency between `create` and
/// `create2` functions (required by the compiler).
function create(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input
) external payable returns (address newAddress);
/// @dev While `_salt` is never used here, we leave it here as a parameter
/// for the consistency with the `create` function.
function createAccount(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input,
AccountAbstractionVersion _aaVersion
) external payable returns (address newAddress);
/// @notice Returns the information about a certain AA.
function getAccountInfo(address _address) external view returns (AccountInfo memory info);
/// @notice Can be called by an account to update its account version
function updateAccountVersion(AccountAbstractionVersion _version) external;
/// @notice Can be called by an account to update its nonce ordering
function updateNonceOrdering(AccountNonceOrdering _nonceOrdering) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./interfaces/IBootloaderUtilities.sol";
import "./libraries/TransactionHelper.sol";
import "./libraries/RLPEncoder.sol";
import "./libraries/EfficientCall.sol";
/**
* @author Matter Labs
* @notice A contract that provides some utility methods for the bootloader
* that is very hard to write in Yul.
*/
contract BootloaderUtilities is IBootloaderUtilities {
using TransactionHelper for *;
/// @notice Calculates the canonical transaction hash and the recommended transaction hash.
/// @param _transaction The transaction.
/// @return txHash and signedTxHash of the transaction, i.e. the transaction hash to be used in the explorer and commits to all
/// the fields of the transaction and the recommended hash to be signed for this transaction.
/// @dev txHash must be unique for all transactions.
function getTransactionHashes(
Transaction calldata _transaction
) external view override returns (bytes32 txHash, bytes32 signedTxHash) {
signedTxHash = _transaction.encodeHash();
if (_transaction.txType == EIP_712_TX_TYPE) {
txHash = keccak256(bytes.concat(signedTxHash, EfficientCall.keccak(_transaction.signature)));
} else if (_transaction.txType == LEGACY_TX_TYPE) {
txHash = encodeLegacyTransactionHash(_transaction);
} else if (_transaction.txType == EIP_1559_TX_TYPE) {
txHash = encodeEIP1559TransactionHash(_transaction);
} else if (_transaction.txType == EIP_2930_TX_TYPE) {
txHash = encodeEIP2930TransactionHash(_transaction);
} else {
revert("Unsupported tx type");
}
}
/// @notice Calculates the hash for a legacy transaction.
/// @param _transaction The legacy transaction.
/// @return txHash The hash of the transaction.
function encodeLegacyTransactionHash(Transaction calldata _transaction) internal view returns (bytes32 txHash) {
// Hash of legacy transactions are encoded as one of the:
// - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0)
// - RLP(nonce, gasPrice, gasLimit, to, value, data)
//
// In this RLP encoding, only the first one above list appears, so we encode each element
// inside list and then concatenate the length of all elements with them.
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
// Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error".
bytes memory encodedGasParam;
{
bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit);
}
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
bytes memory rEncoded;
{
uint256 rInt = uint256(bytes32(_transaction.signature[0:32]));
rEncoded = RLPEncoder.encodeUint256(rInt);
}
bytes memory sEncoded;
{
uint256 sInt = uint256(bytes32(_transaction.signature[32:64]));
sEncoded = RLPEncoder.encodeUint256(sInt);
}
bytes memory vEncoded;
{
uint256 vInt = uint256(uint8(_transaction.signature[64]));
require(vInt == 27 || vInt == 28, "Invalid v value");
// If the `chainId` is specified in the transaction, then the `v` value is encoded as
// `35 + y + 2 * chainId == vInt + 8 + 2 * chainId`, where y - parity bit (see EIP-155).
if (_transaction.reserved[0] != 0) {
vInt += 8 + block.chainid * 2;
}
vEncoded = RLPEncoder.encodeUint256(vInt);
}
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedNonce.length +
encodedGasParam.length +
encodedTo.length +
encodedValue.length +
encodedDataLength.length +
_transaction.data.length +
rEncoded.length +
sEncoded.length +
vEncoded.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
encodedListLength,
encodedNonce,
encodedGasParam,
encodedTo,
encodedValue,
encodedDataLength,
_transaction.data,
vEncoded,
rEncoded,
sEncoded
)
);
}
/// @notice Calculates the hash for an EIP2930 transaction.
/// @param _transaction The EIP2930 transaction.
/// @return txHash The hash of the transaction.
function encodeEIP2930TransactionHash(Transaction calldata _transaction) internal view returns (bytes32) {
// Encode all fixed-length params to avoid "stack too deep error"
bytes memory encodedFixedLengthParams;
{
bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
encodedFixedLengthParams = bytes.concat(
encodedChainId,
encodedNonce,
encodedGasPrice,
encodedGasLimit,
encodedTo,
encodedValue
);
}
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// On zkSync, access lists are always zero length (at least for now).
bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);
bytes memory rEncoded;
{
uint256 rInt = uint256(bytes32(_transaction.signature[0:32]));
rEncoded = RLPEncoder.encodeUint256(rInt);
}
bytes memory sEncoded;
{
uint256 sInt = uint256(bytes32(_transaction.signature[32:64]));
sEncoded = RLPEncoder.encodeUint256(sInt);
}
bytes memory vEncoded;
{
uint256 vInt = uint256(uint8(_transaction.signature[64]));
require(vInt == 27 || vInt == 28, "Invalid v value");
vEncoded = RLPEncoder.encodeUint256(vInt - 27);
}
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedFixedLengthParams.length +
encodedDataLength.length +
_transaction.data.length +
encodedAccessListLength.length +
rEncoded.length +
sEncoded.length +
vEncoded.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
"\x01",
encodedListLength,
encodedFixedLengthParams,
encodedDataLength,
_transaction.data,
encodedAccessListLength,
vEncoded,
rEncoded,
sEncoded
)
);
}
/// @notice Calculates the hash for an EIP1559 transaction.
/// @param _transaction The legacy transaction.
/// @return txHash The hash of the transaction.
function encodeEIP1559TransactionHash(Transaction calldata _transaction) internal view returns (bytes32) {
// The formula for hash of EIP1559 transaction in the original proposal:
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
// Encode all fixed-length params to avoid "stack too deep error"
bytes memory encodedFixedLengthParams;
{
bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas);
bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
encodedFixedLengthParams = bytes.concat(
encodedChainId,
encodedNonce,
encodedMaxPriorityFeePerGas,
encodedMaxFeePerGas,
encodedGasLimit,
encodedTo,
encodedValue
);
}
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// On zkSync, access lists are always zero length (at least for now).
bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);
bytes memory rEncoded;
{
uint256 rInt = uint256(bytes32(_transaction.signature[0:32]));
rEncoded = RLPEncoder.encodeUint256(rInt);
}
bytes memory sEncoded;
{
uint256 sInt = uint256(bytes32(_transaction.signature[32:64]));
sEncoded = RLPEncoder.encodeUint256(sInt);
}
bytes memory vEncoded;
{
uint256 vInt = uint256(uint8(_transaction.signature[64]));
require(vInt == 27 || vInt == 28, "Invalid v value");
vEncoded = RLPEncoder.encodeUint256(vInt - 27);
}
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedFixedLengthParams.length +
encodedDataLength.length +
_transaction.data.length +
encodedAccessListLength.length +
rEncoded.length +
sEncoded.length +
vEncoded.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
"\x02",
encodedListLength,
encodedFixedLengthParams,
encodedDataLength,
_transaction.data,
encodedAccessListLength,
vEncoded,
rEncoded,
sEncoded
)
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IKnownCodesStorage {
event MarkedAsKnown(bytes32 indexed bytecodeHash, bool indexed sendBytecodeToL1);
function markFactoryDeps(bool _shouldSendToL1, bytes32[] calldata _hashes) external;
function markBytecodeAsPublished(
bytes32 _bytecodeHash,
bytes32 _l1PreimageHash,
uint256 _l1PreimageBytesLen
) external;
function getMarker(bytes32 _hash) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IEthToken {
function balanceOf(uint256) external view returns (uint256);
function transferFromTo(address _from, address _to, uint256 _amount) external;
function totalSupply() external view returns (uint256);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function mint(address _account, uint256 _amount) external;
function withdraw(address _l1Receiver) external payable;
event Mint(address indexed account, uint256 amount);
event Transfer(address indexed from, address indexed to, uint256 value);
event Withdrawal(address indexed _l2Sender, address indexed _l1Receiver, uint256 _amount);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IAccountCodeStorage {
function storeAccountConstructingCodeHash(address _address, bytes32 _hash) external;
function storeAccountConstructedCodeHash(address _address, bytes32 _hash) external;
function markAccountCodeHashAsConstructed(address _address) external;
function getRawCodeHash(address _address) external view returns (bytes32 codeHash);
function getCodeHash(uint256 _input) external view returns (bytes32 codeHash);
function getCodeSize(uint256 _input) external view returns (uint256 codeSize);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
struct ImmutableData {
uint256 index;
bytes32 value;
}
interface IImmutableSimulator {
function getImmutable(address _dest, uint256 _index) external view returns (bytes32);
function setImmutables(address _dest, ImmutableData[] calldata _immutables) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @author Matter Labs
* @notice Contract that stores some of the context variables, that may be either
* block-scoped, tx-scoped or system-wide.
*/
interface ISystemContext {
function chainId() external view returns (uint256);
function origin() external view returns (address);
function gasPrice() external view returns (uint256);
function blockGasLimit() external view returns (uint256);
function coinbase() external view returns (address);
function difficulty() external view returns (uint256);
function baseFee() external view returns (uint256);
function blockHash(uint256 _block) external view returns (bytes32);
function getBlockHashEVM(uint256 _block) external view returns (bytes32);
function getBlockNumberAndTimestamp() external view returns (uint256 blockNumber, uint256 blockTimestamp);
// Note, that for now, the implementation of the bootloader allows this variables to
// be incremented multiple times inside a block, so it should not relied upon right now.
function getBlockNumber() external view returns (uint256);
function getBlockTimestamp() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IBytecodeCompressor {
function publishCompressedBytecode(
bytes calldata _bytecode,
bytes calldata _rawCompressedData
) external payable returns (bytes32 bytecodeHash);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IL1Messenger {
// Possibly in the future we will be able to track the messages sent to L1 with
// some hooks in the VM. For now, it is much easier to track them with L2 events.
event L1MessageSent(address indexed _sender, bytes32 indexed _hash, bytes _message);
function sendToL1(bytes memory _message) external returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
import "./EfficientCall.sol";
/**
* @author Matter Labs
* @dev Common utilities used in zkSync system contracts
*/
library Utils {
/// @dev Bit mask of bytecode hash "isConstructor" marker
bytes32 constant IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK =
0x00ff000000000000000000000000000000000000000000000000000000000000;
/// @dev Bit mask to set the "isConstructor" marker in the bytecode hash
bytes32 constant SET_IS_CONSTRUCTOR_MARKER_BIT_MASK =
0x0001000000000000000000000000000000000000000000000000000000000000;
function safeCastToU128(uint256 _x) internal pure returns (uint128) {
require(_x <= type(uint128).max, "Overflow");
return uint128(_x);
}
function safeCastToU32(uint256 _x) internal pure returns (uint32) {
require(_x <= type(uint32).max, "Overflow");
return uint32(_x);
}
function safeCastToU24(uint256 _x) internal pure returns (uint24) {
require(_x <= type(uint24).max, "Overflow");
return uint24(_x);
}
/// @return codeLength The bytecode length in bytes
function bytecodeLenInBytes(bytes32 _bytecodeHash) internal pure returns (uint256 codeLength) {
codeLength = bytecodeLenInWords(_bytecodeHash) << 5; // _bytecodeHash * 32
}
/// @return codeLengthInWords The bytecode length in machine words
function bytecodeLenInWords(bytes32 _bytecodeHash) internal pure returns (uint256 codeLengthInWords) {
unchecked {
codeLengthInWords = uint256(uint8(_bytecodeHash[2])) * 256 + uint256(uint8(_bytecodeHash[3]));
}
}
/// @notice Denotes whether bytecode hash corresponds to a contract that already constructed
function isContractConstructed(bytes32 _bytecodeHash) internal pure returns (bool) {
return _bytecodeHash[1] == 0x00;
}
/// @notice Denotes whether bytecode hash corresponds to a contract that is on constructor or has already been constructed
function isContractConstructing(bytes32 _bytecodeHash) internal pure returns (bool) {
return _bytecodeHash[1] == 0x01;
}
/// @notice Sets "isConstructor" flag to TRUE for the bytecode hash
/// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag
/// @return The bytecode hash with "isConstructor" flag set to TRUE
function constructingBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) {
// Clear the "isConstructor" marker and set it to 0x01.
return constructedBytecodeHash(_bytecodeHash) | SET_IS_CONSTRUCTOR_MARKER_BIT_MASK;
}
/// @notice Sets "isConstructor" flag to FALSE for the bytecode hash
/// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag
/// @return The bytecode hash with "isConstructor" flag set to FALSE
function constructedBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) {
return _bytecodeHash & ~IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK;
}
/// @notice Validate the bytecode format and calculate its hash.
/// @param _bytecode The bytecode to hash.
/// @return hashedBytecode The 32-byte hash of the bytecode.
/// Note: The function reverts the execution if the bytecode has non expected format:
/// - Bytecode bytes length is not a multiple of 32
/// - Bytecode bytes length is not less than 2^21 bytes (2^16 words)
/// - Bytecode words length is not odd
function hashL2Bytecode(bytes calldata _bytecode) internal view returns (bytes32 hashedBytecode) {
// Note that the length of the bytecode must be provided in 32-byte words.
require(_bytecode.length % 32 == 0, "po");
uint256 bytecodeLenInWords = _bytecode.length / 32;
require(bytecodeLenInWords < 2 ** 16, "pp"); // bytecode length must be less than 2^16 words
require(bytecodeLenInWords % 2 == 1, "pr"); // bytecode length in words must be odd
hashedBytecode =
EfficientCall.sha(_bytecode) &
0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
// Setting the version of the hash
hashedBytecode = (hashedBytecode | bytes32(uint256(1 << 248)));
// Setting the length
hashedBytecode = hashedBytecode | bytes32(bytecodeLenInWords << 224);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8;
import {MAX_SYSTEM_CONTRACT_ADDRESS, MSG_VALUE_SYSTEM_CONTRACT} from "../Constants.sol";
import "./SystemContractsCaller.sol";
import "./Utils.sol";
uint256 constant UINT32_MASK = 0xffffffff;
uint256 constant UINT128_MASK = 0xffffffffffffffffffffffffffffffff;
/// @dev The mask that is used to convert any uint256 to a proper address.
/// It needs to be padded with `00` to be treated as uint256 by Solidity
uint256 constant ADDRESS_MASK = 0x00ffffffffffffffffffffffffffffffffffffffff;
struct ZkSyncMeta {
uint32 gasPerPubdataByte;
uint32 heapSize;
uint32 auxHeapSize;
uint8 shardId;
uint8 callerShardId;
uint8 codeShardId;
}
enum Global {
CalldataPtr,
CallFlags,
ExtraABIData1,
ExtraABIData2,
ReturndataPtr
}
/**
* @author Matter Labs
* @notice Library used for accessing zkEVM-specific opcodes, needed for the development
* of system contracts.
* @dev While this library will be eventually available to public, some of the provided
* methods won't work for non-system contracts. We will not recommend this library
* for external use.
*/
library SystemContractHelper {
/// @notice Send an L2Log to L1.
/// @param _isService The `isService` flag.
/// @param _key The `key` part of the L2Log.
/// @param _value The `value` part of the L2Log.
/// @dev The meaning of all these parameters is context-dependent, but they
/// have no intrinsic meaning per se.
function toL1(bool _isService, bytes32 _key, bytes32 _value) internal {
address callAddr = TO_L1_CALL_ADDRESS;
assembly {
// Ensuring that the type is bool
_isService := and(_isService, 1)
// This `success` is always 0, but the method always succeeds
// (except for the cases when there is not enough gas)
let success := call(_isService, callAddr, _key, _value, 0xFFFF, 0, 0)
}
}
/// @notice Get address of the currently executed code.
/// @dev This allows differentiating between `call` and `delegatecall`.
/// During the former `this` and `codeAddress` are the same, while
/// during the latter they are not.
function getCodeAddress() internal view returns (address addr) {
address callAddr = CODE_ADDRESS_CALL_ADDRESS;
assembly {
addr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Provide a compiler hint, by placing calldata fat pointer into virtual `ACTIVE_PTR`,
/// that can be manipulated by `ptr.add`/`ptr.sub`/`ptr.pack`/`ptr.shrink` later.
/// @dev This allows making a call by forwarding calldata pointer to the child call.
/// It is a much more efficient way to forward calldata, than standard EVM bytes copying.
function loadCalldataIntoActivePtr() internal view {
address callAddr = LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS;
assembly {
pop(staticcall(0, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice Compiler simulation of the `ptr.pack` opcode for the virtual `ACTIVE_PTR` pointer.
/// @dev Do the concatenation between lowest part of `ACTIVE_PTR` and highest part of `_farCallAbi`
/// forming packed fat pointer for a far call or ret ABI when necessary.
/// Note: Panics if the lowest 128 bits of `_farCallAbi` are not zeroes.
function ptrPackIntoActivePtr(uint256 _farCallAbi) internal view {
address callAddr = PTR_PACK_INTO_ACTIVE_CALL_ADDRESS;
assembly {
pop(staticcall(_farCallAbi, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice Compiler simulation of the `ptr.add` opcode for the virtual `ACTIVE_PTR` pointer.
/// @dev Transforms `ACTIVE_PTR.offset` into `ACTIVE_PTR.offset + u32(_value)`. If overflow happens then it panics.
function ptrAddIntoActive(uint32 _value) internal view {
address callAddr = PTR_ADD_INTO_ACTIVE_CALL_ADDRESS;
uint256 cleanupMask = UINT32_MASK;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_value := and(_value, cleanupMask)
pop(staticcall(_value, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice Compiler simulation of the `ptr.shrink` opcode for the virtual `ACTIVE_PTR` pointer.
/// @dev Transforms `ACTIVE_PTR.length` into `ACTIVE_PTR.length - u32(_shrink)`. If underflow happens then it panics.
function ptrShrinkIntoActive(uint32 _shrink) internal view {
address callAddr = PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS;
uint256 cleanupMask = UINT32_MASK;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_shrink := and(_shrink, cleanupMask)
pop(staticcall(_shrink, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice packs precompile parameters into one word
/// @param _inputMemoryOffset The memory offset in 32-byte words for the input data for calling the precompile.
/// @param _inputMemoryLength The length of the input data in words.
/// @param _outputMemoryOffset The memory offset in 32-byte words for the output data.
/// @param _outputMemoryLength The length of the output data in words.
/// @param _perPrecompileInterpreted The constant, the meaning of which is defined separately for
/// each precompile. For information, please read the documentation of the precompilecall log in
/// the VM.
function packPrecompileParams(
uint32 _inputMemoryOffset,
uint32 _inputMemoryLength,
uint32 _outputMemoryOffset,
uint32 _outputMemoryLength,
uint64 _perPrecompileInterpreted
) internal pure returns (uint256 rawParams) {
rawParams = _inputMemoryOffset;
rawParams |= uint256(_inputMemoryLength) << 32;
rawParams |= uint256(_outputMemoryOffset) << 64;
rawParams |= uint256(_outputMemoryLength) << 96;
rawParams |= uint256(_perPrecompileInterpreted) << 192;
}
/// @notice Call precompile with given parameters.
/// @param _rawParams The packed precompile params. They can be retrieved by
/// the `packPrecompileParams` method.
/// @param _gasToBurn The number of gas to burn during this call.
/// @return success Whether the call was successful.
/// @dev The list of currently available precompiles sha256, keccak256, ecrecover.
/// NOTE: The precompile type depends on `this` which calls precompile, which means that only
/// system contracts corresponding to the list of precompiles above can do `precompileCall`.
/// @dev If used not in the `sha256`, `keccak256` or `ecrecover` contracts, it will just burn the gas provided.
function precompileCall(uint256 _rawParams, uint32 _gasToBurn) internal view returns (bool success) {
address callAddr = PRECOMPILE_CALL_ADDRESS;
// After `precompileCall` gas will be burned down to 0 if there are not enough of them,
// thats why it should be checked before the call.
require(gasleft() >= _gasToBurn);
uint256 cleanupMask = UINT32_MASK;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_gasToBurn := and(_gasToBurn, cleanupMask)
success := staticcall(_rawParams, callAddr, _gasToBurn, 0xFFFF, 0, 0)
}
}
/// @notice Set `msg.value` to next far call.
/// @param _value The msg.value that will be used for the *next* call.
/// @dev If called not in kernel mode, it will result in a revert (enforced by the VM)
function setValueForNextFarCall(uint128 _value) internal returns (bool success) {
uint256 cleanupMask = UINT128_MASK;
address callAddr = SET_CONTEXT_VALUE_CALL_ADDRESS;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_value := and(_value, cleanupMask)
success := call(0, callAddr, _value, 0, 0xFFFF, 0, 0)
}
}
/// @notice Initialize a new event.
/// @param initializer The event initializing value.
/// @param value1 The first topic or data chunk.
function eventInitialize(uint256 initializer, uint256 value1) internal {
address callAddr = EVENT_INITIALIZE_ADDRESS;
assembly {
pop(call(initializer, callAddr, value1, 0, 0xFFFF, 0, 0))
}
}
/// @notice Continue writing the previously initialized event.
/// @param value1 The first topic or data chunk.
/// @param value2 The second topic or data chunk.
function eventWrite(uint256 value1, uint256 value2) internal {
address callAddr = EVENT_WRITE_ADDRESS;
assembly {
pop(call(value1, callAddr, value2, 0, 0xFFFF, 0, 0))
}
}
/// @notice Get the packed representation of the `ZkSyncMeta` from the current context.
/// @return meta The packed representation of the ZkSyncMeta.
/// @dev The fields in ZkSyncMeta are NOT tightly packed, i.e. there is a special rule on how
/// they are packed. For more information, please read the documentation on ZkSyncMeta.
function getZkSyncMetaBytes() internal view returns (uint256 meta) {
address callAddr = META_CALL_ADDRESS;
assembly {
meta := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Returns the bits [offset..offset+size-1] of the meta.
/// @param meta Packed representation of the ZkSyncMeta.
/// @param offset The offset of the bits.
/// @param size The size of the extracted number in bits.
/// @return result The extracted number.
function extractNumberFromMeta(uint256 meta, uint256 offset, uint256 size) internal pure returns (uint256 result) {
// Firstly, we delete all the bits after the field
uint256 shifted = (meta << (256 - size - offset));
// Then we shift everything back
result = (shifted >> (256 - size));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of gas
/// that a single byte sent to L1 as pubdata costs.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return gasPerPubdataByte The current price in gas per pubdata byte.
function getGasPerPubdataByteFromMeta(uint256 meta) internal pure returns (uint32 gasPerPubdataByte) {
gasPerPubdataByte = uint32(extractNumberFromMeta(meta, META_GAS_PER_PUBDATA_BYTE_OFFSET, 32));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size
/// of the heap in bytes.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return heapSize The size of the memory in bytes byte.
/// @dev The following expression: getHeapSizeFromMeta(getZkSyncMetaBytes()) is
/// equivalent to the MSIZE in Solidity.
function getHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 heapSize) {
heapSize = uint32(extractNumberFromMeta(meta, META_HEAP_SIZE_OFFSET, 32));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size
/// of the auxilary heap in bytes.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return auxHeapSize The size of the auxilary memory in bytes byte.
/// @dev You can read more on auxilary memory in the VM1.2 documentation.
function getAuxHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 auxHeapSize) {
auxHeapSize = uint32(extractNumberFromMeta(meta, META_AUX_HEAP_SIZE_OFFSET, 32));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of `this`.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return shardId The shardId of `this`.
/// @dev Currently only shard 0 (zkRollup) is supported.
function getShardIdFromMeta(uint256 meta) internal pure returns (uint8 shardId) {
shardId = uint8(extractNumberFromMeta(meta, META_SHARD_ID_OFFSET, 8));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of
/// the msg.sender.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return callerShardId The shardId of the msg.sender.
/// @dev Currently only shard 0 (zkRollup) is supported.
function getCallerShardIdFromMeta(uint256 meta) internal pure returns (uint8 callerShardId) {
callerShardId = uint8(extractNumberFromMeta(meta, META_CALLER_SHARD_ID_OFFSET, 8));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of
/// the currently executed code.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return codeShardId The shardId of the currently executed code.
/// @dev Currently only shard 0 (zkRollup) is supported.
function getCodeShardIdFromMeta(uint256 meta) internal pure returns (uint8 codeShardId) {
codeShardId = uint8(extractNumberFromMeta(meta, META_CODE_SHARD_ID_OFFSET, 8));
}
/// @notice Retrieves the ZkSyncMeta structure.
/// @return meta The ZkSyncMeta execution context parameters.
function getZkSyncMeta() internal view returns (ZkSyncMeta memory meta) {
uint256 metaPacked = getZkSyncMetaBytes();
meta.gasPerPubdataByte = getGasPerPubdataByteFromMeta(metaPacked);
meta.shardId = getShardIdFromMeta(metaPacked);
meta.callerShardId = getCallerShardIdFromMeta(metaPacked);
meta.codeShardId = getCodeShardIdFromMeta(metaPacked);
}
/// @notice Returns the call flags for the current call.
/// @return callFlags The bitmask of the callflags.
/// @dev Call flags is the value of the first register
/// at the start of the call.
/// @dev The zero bit of the callFlags indicates whether the call is
/// a constructor call. The first bit of the callFlags indicates whether
/// the call is a system one.
function getCallFlags() internal view returns (uint256 callFlags) {
address callAddr = CALLFLAGS_CALL_ADDRESS;
assembly {
callFlags := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Returns the current calldata pointer.
/// @return ptr The current calldata pointer.
/// @dev NOTE: This file is just an integer and it can not be used
/// to forward the calldata to the next calls in any way.
function getCalldataPtr() internal view returns (uint256 ptr) {
address callAddr = PTR_CALLDATA_CALL_ADDRESS;
assembly {
ptr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Returns the N-th extraAbiParam for the current call.
/// @return extraAbiData The value of the N-th extraAbiParam for this call.
/// @dev It is equal to the value of the (N+2)-th register
/// at the start of the call.
function getExtraAbiData(uint256 index) internal view returns (uint256 extraAbiData) {
require(index < 10, "There are only 10 accessible registers");
address callAddr = GET_EXTRA_ABI_DATA_ADDRESS;
assembly {
extraAbiData := staticcall(index, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Retuns whether the current call is a system call.
/// @return `true` or `false` based on whether the current call is a system call.
function isSystemCall() internal view returns (bool) {
uint256 callFlags = getCallFlags();
// When the system call is passed, the 2-bit it set to 1
return (callFlags & 2) != 0;
}
/// @notice Returns whether the address is a system contract.
/// @param _address The address to test
/// @return `true` or `false` based on whether the `_address` is a system contract.
function isSystemContract(address _address) internal pure returns (bool) {
return uint160(_address) <= uint160(MAX_SYSTEM_CONTRACT_ADDRESS);
}
}
/// @dev Solidity does not allow exporting modifiers via libraries, so
/// the only way to do reuse modifiers is to have a base contract
abstract contract ISystemContract {
/// @notice Modifier that makes sure that the method
/// can only be called via a system call.
modifier onlySystemCall() {
require(
SystemContractHelper.isSystemCall() || SystemContractHelper.isSystemContract(msg.sender),
"This method require system call flag"
);
_;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @author Matter Labs
* @dev The interface that is used for encoding/decoding of
* different types of paymaster flows.
* @notice This is NOT an interface to be implementated
* by contracts. It is just used for encoding.
*/
interface IPaymasterFlow {
function general(bytes calldata input) external;
function approvalBased(address _token, uint256 _minAllowance, bytes calldata _innerInput) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library RLPEncoder {
function encodeAddress(address _val) internal pure returns (bytes memory encoded) {
// The size is equal to 20 bytes of the address itself + 1 for encoding bytes length in RLP.
encoded = new bytes(0x15);
bytes20 shiftedVal = bytes20(_val);
assembly {
// In the first byte we write the encoded length as 0x80 + 0x14 == 0x94.
mstore(add(encoded, 0x20), 0x9400000000000000000000000000000000000000000000000000000000000000)
// Write address data without stripping zeros.
mstore(add(encoded, 0x21), shiftedVal)
}
}
function encodeUint256(uint256 _val) internal pure returns (bytes memory encoded) {
unchecked {
if (_val < 128) {
encoded = new bytes(1);
// Handle zero as a non-value, since stripping zeroes results in an empty byte array
encoded[0] = (_val == 0) ? bytes1(uint8(128)) : bytes1(uint8(_val));
} else {
uint256 hbs = _highestByteSet(_val);
encoded = new bytes(hbs + 2);
encoded[0] = bytes1(uint8(hbs + 0x81));
uint256 lbs = 31 - hbs;
uint256 shiftedVal = _val << (lbs * 8);
assembly {
mstore(add(encoded, 0x21), shiftedVal)
}
}
}
}
/// @notice Encodes the size of bytes in RLP format.
/// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported.
/// NOTE: panics if the length is 1 since the length encoding is ambiguous in this case.
function encodeNonSingleBytesLen(uint64 _len) internal pure returns (bytes memory) {
assert(_len != 1);
return _encodeLength(_len, 0x80);
}
/// @notice Encodes the size of list items in RLP format.
/// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported.
function encodeListLen(uint64 _len) internal pure returns (bytes memory) {
return _encodeLength(_len, 0xc0);
}
function _encodeLength(uint64 _len, uint256 _offset) private pure returns (bytes memory encoded) {
unchecked {
if (_len < 56) {
encoded = new bytes(1);
encoded[0] = bytes1(uint8(_len + _offset));
} else {
uint256 hbs = _highestByteSet(uint256(_len));
encoded = new bytes(hbs + 2);
encoded[0] = bytes1(uint8(_offset + hbs + 56));
uint256 lbs = 31 - hbs;
uint256 shiftedVal = uint256(_len) << (lbs * 8);
assembly {
mstore(add(encoded, 0x21), shiftedVal)
}
}
}
}
/// @notice Computes the index of the highest byte set in number.
/// @notice Uses little endian ordering (The least significant byte has index `0`).
/// NOTE: returns `0` for `0`
function _highestByteSet(uint256 _number) private pure returns (uint256 hbs) {
unchecked {
if (_number > type(uint128).max) {
_number >>= 128;
hbs += 16;
}
if (_number > type(uint64).max) {
_number >>= 64;
hbs += 8;
}
if (_number > type(uint32).max) {
_number >>= 32;
hbs += 4;
}
if (_number > type(uint16).max) {
_number >>= 16;
hbs += 2;
}
if (_number > type(uint8).max) {
hbs += 1;
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(
token,
abi.encodeWithSelector(token.transfer.selector, to, value)
);
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(
token,
abi.encodeWithSelector(token.transferFrom.selector, from, to, value)
);
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(
token,
abi.encodeWithSelector(token.approve.selector, spender, value)
);
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(
oldAllowance >= value,
"SafeERC20: decreased allowance below zero"
);
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(
nonceAfter == nonceBefore + 1,
"SafeERC20: permit did not succeed"
);
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(
data,
"SafeERC20: low-level call failed"
);
if (returndata.length > 0) {
// Return data is optional
require(
abi.decode(returndata, (bool)),
"SafeERC20: ERC20 operation did not succeed"
);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../libraries/TransactionHelper.sol";
interface IBootloaderUtilities {
function getTransactionHashes(
Transaction calldata _transaction
) external view returns (bytes32 txHash, bytes32 signedTxHash);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(
address(this).balance >= amount,
"Address: insufficient balance"
);
(bool success, ) = recipient.call{value: amount}("");
require(
success,
"Address: unable to send value, recipient may have reverted"
);
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data)
internal
returns (bytes memory)
{
return
functionCallWithValue(
target,
data,
0,
"Address: low-level call failed"
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return
functionCallWithValue(
target,
data,
value,
"Address: low-level call with value failed"
);
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(
address(this).balance >= value,
"Address: insufficient balance for call"
);
(bool success, bytes memory returndata) = target.call{value: value}(
data
);
return
verifyCallResultFromTarget(
target,
success,
returndata,
errorMessage
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data)
internal
view
returns (bytes memory)
{
return
functionStaticCall(
target,
data,
"Address: low-level static call failed"
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return
verifyCallResultFromTarget(
target,
success,
returndata,
errorMessage
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data)
internal
returns (bytes memory)
{
return
functionDelegateCall(
target,
data,
"Address: low-level delegate call failed"
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return
verifyCallResultFromTarget(
target,
success,
returndata,
errorMessage
);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage)
private
pure
{
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}