Contract Name:
ClaimPaymaster
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
import {Transaction} from "@matterlabs/zksync-contracts/l2/system-contracts/libraries/TransactionHelper.sol";
import {IPaymaster, ExecutionResult, PAYMASTER_VALIDATION_SUCCESS_MAGIC} from "@matterlabs/zksync-contracts/l2/system-contracts/interfaces/IPaymaster.sol";
import {AbstractPenguClaim} from "./AbstractPenguClaim.sol";
import {BOOTLOADER_FORMAL_ADDRESS} from "@matterlabs/zksync-contracts/l2/system-contracts/Constants.sol";
/**
* This Paymaster sponsors the gas for any user attempting to claim PENGU.
*/
contract ClaimPaymaster is IPaymaster {
error OnlyDeployer();
error OnlyBootloader();
error MustBePenguClaim();
error MustCallClaim();
error WithdrawalFailed();
error BootloaderCallFailed();
address public immutable ABSTRACT_PENGU_CLAIM;
address private immutable _deployer;
constructor(address _abstractPenguClaim) {
ABSTRACT_PENGU_CLAIM = _abstractPenguClaim;
_deployer = msg.sender;
}
function validateAndPayForPaymasterTransaction(
bytes32,
bytes32,
Transaction calldata _transaction
) external payable returns (bytes4 magic, bytes memory context) {
if (msg.sender != BOOTLOADER_FORMAL_ADDRESS) {
revert OnlyBootloader();
}
if (address(uint160(_transaction.to)) != ABSTRACT_PENGU_CLAIM) {
revert MustBePenguClaim();
}
if (
bytes4(_transaction.data[0:4]) != AbstractPenguClaim.claim.selector
) {
revert MustCallClaim();
}
context = "";
magic = PAYMASTER_VALIDATION_SUCCESS_MAGIC;
uint256 requiredETH = _transaction.gasLimit * _transaction.maxFeePerGas;
(bool success, ) = BOOTLOADER_FORMAL_ADDRESS.call{value: requiredETH}(
""
);
if (!success) {
revert BootloaderCallFailed();
}
}
function postTransaction(
bytes calldata _context,
Transaction calldata _transaction,
bytes32 _txHash,
bytes32 _suggestedSignedHash,
ExecutionResult _txResult,
uint256 _maxRefundedGas
) external payable {}
function withdraw() external {
if (msg.sender != _deployer) {
revert OnlyDeployer();
}
(bool success, ) = _deployer.call{value: address(this).balance}("");
if (!success) {
revert WithdrawalFailed();
}
}
receive() external payable {}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
/**
* @title Verifies signatures from Pudgy World and transfers tokens to correct recipients
*/
contract AbstractPenguClaim is Ownable {
using ECDSA for bytes32;
using MessageHashUtils for bytes32;
// =========================================================
// Errors
// =========================================================
error ZeroAddress();
error SignatureUsed();
error InvalidSignature();
// =========================================================
// Storage
// =========================================================
// PENGU token on Abstract
address public constant PENGU = 0x6060d7fa26Ae7BED2281e6b11207C5B58604cb98;
// signer - this signer is only used for signing, so no potential for signature reuse
address private signer;
// tracks claims
mapping(uint256 => bool) private uidClaimed;
constructor(address _signer) payable Ownable(msg.sender) {
if (_signer == address(0)) revert ZeroAddress();
signer = _signer;
}
// =========================================================
// Claim
// =========================================================
function claim(
uint256 uid,
uint256 quantity,
bytes calldata signature
) external {
if (
!verify(
getMessageHash(msg.sender, uid, quantity),
signature,
signer
)
) revert InvalidSignature();
// if (uidClaimed[uid]) revert SignatureUsed();
// uidClaimed[uid] = true;
SafeERC20.safeTransfer(IERC20(PENGU), msg.sender, quantity);
}
/*==============================================================
== Sig Verification ==
==============================================================*/
function verify(
bytes32 messageHash,
bytes memory signature,
address _signer
) public pure returns (bool) {
return
messageHash.toEthSignedMessageHash().recover(signature) == _signer;
}
function getMessageHash(
address agw,
uint256 uid,
uint256 quantity
) public pure returns (bytes32) {
return keccak256(abi.encodePacked(agw, uid, quantity));
}
// =========================================================
// Only Owner
// =========================================================
function setSigner(address _signer) external onlyOwner {
if (_signer == address(0)) revert ZeroAddress();
signer = _signer;
}
function withdraw(address token, uint256 balance) external onlyOwner {
SafeERC20.safeTransfer(IERC20(token), msg.sender, balance);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../openzeppelin/token/ERC20/IERC20.sol";
import "../openzeppelin/token/ERC20/utils/SafeERC20.sol";
import "../interfaces/IPaymasterFlow.sol";
import "../interfaces/IContractDeployer.sol";
import {ETH_TOKEN_SYSTEM_CONTRACT, BOOTLOADER_FORMAL_ADDRESS} from "../Constants.sol";
import "./RLPEncoder.sol";
import "./EfficientCall.sol";
/// @dev The type id of zkSync's EIP-712-signed transaction.
uint8 constant EIP_712_TX_TYPE = 0x71;
/// @dev The type id of legacy transactions.
uint8 constant LEGACY_TX_TYPE = 0x0;
/// @dev The type id of legacy transactions.
uint8 constant EIP_2930_TX_TYPE = 0x01;
/// @dev The type id of EIP1559 transactions.
uint8 constant EIP_1559_TX_TYPE = 0x02;
/// @notice Structure used to represent zkSync transaction.
struct Transaction {
// The type of the transaction.
uint256 txType;
// The caller.
uint256 from;
// The callee.
uint256 to;
// The gasLimit to pass with the transaction.
// It has the same meaning as Ethereum's gasLimit.
uint256 gasLimit;
// The maximum amount of gas the user is willing to pay for a byte of pubdata.
uint256 gasPerPubdataByteLimit;
// The maximum fee per gas that the user is willing to pay.
// It is akin to EIP1559's maxFeePerGas.
uint256 maxFeePerGas;
// The maximum priority fee per gas that the user is willing to pay.
// It is akin to EIP1559's maxPriorityFeePerGas.
uint256 maxPriorityFeePerGas;
// The transaction's paymaster. If there is no paymaster, it is equal to 0.
uint256 paymaster;
// The nonce of the transaction.
uint256 nonce;
// The value to pass with the transaction.
uint256 value;
// In the future, we might want to add some
// new fields to the struct. The `txData` struct
// is to be passed to account and any changes to its structure
// would mean a breaking change to these accounts. In order to prevent this,
// we should keep some fields as "reserved".
// It is also recommended that their length is fixed, since
// it would allow easier proof integration (in case we will need
// some special circuit for preprocessing transactions).
uint256[4] reserved;
// The transaction's calldata.
bytes data;
// The signature of the transaction.
bytes signature;
// The properly formatted hashes of bytecodes that must be published on L1
// with the inclusion of this transaction. Note, that a bytecode has been published
// before, the user won't pay fees for its republishing.
bytes32[] factoryDeps;
// The input to the paymaster.
bytes paymasterInput;
// Reserved dynamic type for the future use-case. Using it should be avoided,
// But it is still here, just in case we want to enable some additional functionality.
bytes reservedDynamic;
}
/**
* @author Matter Labs
* @notice Library is used to help custom accounts to work with common methods for the Transaction type.
*/
library TransactionHelper {
using SafeERC20 for IERC20;
/// @notice The EIP-712 typehash for the contract's domain
bytes32 constant EIP712_DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,string version,uint256 chainId)");
bytes32 constant EIP712_TRANSACTION_TYPE_HASH =
keccak256(
"Transaction(uint256 txType,uint256 from,uint256 to,uint256 gasLimit,uint256 gasPerPubdataByteLimit,uint256 maxFeePerGas,uint256 maxPriorityFeePerGas,uint256 paymaster,uint256 nonce,uint256 value,bytes data,bytes32[] factoryDeps,bytes paymasterInput)"
);
/// @notice Whether the token is Ethereum.
/// @param _addr The address of the token
/// @return `true` or `false` based on whether the token is Ether.
/// @dev This method assumes that address is Ether either if the address is 0 (for convenience)
/// or if the address is the address of the L2EthToken system contract.
function isEthToken(uint256 _addr) internal pure returns (bool) {
return _addr == uint256(uint160(address(ETH_TOKEN_SYSTEM_CONTRACT))) || _addr == 0;
}
/// @notice Calculate the suggested signed hash of the transaction,
/// i.e. the hash that is signed by EOAs and is recommended to be signed by other accounts.
function encodeHash(Transaction calldata _transaction) internal view returns (bytes32 resultHash) {
if (_transaction.txType == LEGACY_TX_TYPE) {
resultHash = _encodeHashLegacyTransaction(_transaction);
} else if (_transaction.txType == EIP_712_TX_TYPE) {
resultHash = _encodeHashEIP712Transaction(_transaction);
} else if (_transaction.txType == EIP_1559_TX_TYPE) {
resultHash = _encodeHashEIP1559Transaction(_transaction);
} else if (_transaction.txType == EIP_2930_TX_TYPE) {
resultHash = _encodeHashEIP2930Transaction(_transaction);
} else {
// Currently no other transaction types are supported.
// Any new transaction types will be processed in a similar manner.
revert("Encoding unsupported tx");
}
}
/// @notice Encode hash of the zkSync native transaction type.
/// @return keccak256 hash of the EIP-712 encoded representation of transaction
function _encodeHashEIP712Transaction(Transaction calldata _transaction) private view returns (bytes32) {
bytes32 structHash = keccak256(
abi.encode(
EIP712_TRANSACTION_TYPE_HASH,
_transaction.txType,
_transaction.from,
_transaction.to,
_transaction.gasLimit,
_transaction.gasPerPubdataByteLimit,
_transaction.maxFeePerGas,
_transaction.maxPriorityFeePerGas,
_transaction.paymaster,
_transaction.nonce,
_transaction.value,
EfficientCall.keccak(_transaction.data),
keccak256(abi.encodePacked(_transaction.factoryDeps)),
EfficientCall.keccak(_transaction.paymasterInput)
)
);
bytes32 domainSeparator = keccak256(
abi.encode(EIP712_DOMAIN_TYPEHASH, keccak256("zkSync"), keccak256("2"), block.chainid)
);
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
/// @notice Encode hash of the legacy transaction type.
/// @return keccak256 of the serialized RLP encoded representation of transaction
function _encodeHashLegacyTransaction(Transaction calldata _transaction) private view returns (bytes32) {
// Hash of legacy transactions are encoded as one of the:
// - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0)
// - RLP(nonce, gasPrice, gasLimit, to, value, data)
//
// In this RLP encoding, only the first one above list appears, so we encode each element
// inside list and then concatenate the length of all elements with them.
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
// Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error".
bytes memory encodedGasParam;
{
bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit);
}
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// Encode `chainId` according to EIP-155, but only if the `chainId` is specified in the transaction.
bytes memory encodedChainId;
if (_transaction.reserved[0] != 0) {
encodedChainId = bytes.concat(RLPEncoder.encodeUint256(block.chainid), hex"80_80");
}
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedNonce.length +
encodedGasParam.length +
encodedTo.length +
encodedValue.length +
encodedDataLength.length +
_transaction.data.length +
encodedChainId.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
encodedListLength,
encodedNonce,
encodedGasParam,
encodedTo,
encodedValue,
encodedDataLength,
_transaction.data,
encodedChainId
)
);
}
/// @notice Encode hash of the EIP2930 transaction type.
/// @return keccak256 of the serialized RLP encoded representation of transaction
function _encodeHashEIP2930Transaction(Transaction calldata _transaction) private view returns (bytes32) {
// Hash of EIP2930 transactions is encoded the following way:
// H(0x01 || RLP(chain_id, nonce, gas_price, gas_limit, destination, amount, data, access_list))
//
// Note, that on zkSync access lists are not supported and should always be empty.
// Encode all fixed-length params to avoid "stack too deep error"
bytes memory encodedFixedLengthParams;
{
bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
encodedFixedLengthParams = bytes.concat(
encodedChainId,
encodedNonce,
encodedGasPrice,
encodedGasLimit,
encodedTo,
encodedValue
);
}
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// On zkSync, access lists are always zero length (at least for now).
bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedFixedLengthParams.length +
encodedDataLength.length +
_transaction.data.length +
encodedAccessListLength.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
"\x01",
encodedListLength,
encodedFixedLengthParams,
encodedDataLength,
_transaction.data,
encodedAccessListLength
)
);
}
/// @notice Encode hash of the EIP1559 transaction type.
/// @return keccak256 of the serialized RLP encoded representation of transaction
function _encodeHashEIP1559Transaction(Transaction calldata _transaction) private view returns (bytes32) {
// Hash of EIP1559 transactions is encoded the following way:
// H(0x02 || RLP(chain_id, nonce, max_priority_fee_per_gas, max_fee_per_gas, gas_limit, destination, amount, data, access_list))
//
// Note, that on zkSync access lists are not supported and should always be empty.
// Encode all fixed-length params to avoid "stack too deep error"
bytes memory encodedFixedLengthParams;
{
bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas);
bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
encodedFixedLengthParams = bytes.concat(
encodedChainId,
encodedNonce,
encodedMaxPriorityFeePerGas,
encodedMaxFeePerGas,
encodedGasLimit,
encodedTo,
encodedValue
);
}
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// On zkSync, access lists are always zero length (at least for now).
bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedFixedLengthParams.length +
encodedDataLength.length +
_transaction.data.length +
encodedAccessListLength.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
"\x02",
encodedListLength,
encodedFixedLengthParams,
encodedDataLength,
_transaction.data,
encodedAccessListLength
)
);
}
/// @notice Processes the common paymaster flows, e.g. setting proper allowance
/// for tokens, etc. For more information on the expected behavior, check out
/// the "Paymaster flows" section in the documentation.
function processPaymasterInput(Transaction calldata _transaction) internal {
require(_transaction.paymasterInput.length >= 4, "The standard paymaster input must be at least 4 bytes long");
bytes4 paymasterInputSelector = bytes4(_transaction.paymasterInput[0:4]);
if (paymasterInputSelector == IPaymasterFlow.approvalBased.selector) {
require(
_transaction.paymasterInput.length >= 68,
"The approvalBased paymaster input must be at least 68 bytes long"
);
// While the actual data consists of address, uint256 and bytes data,
// the data is needed only for the paymaster, so we ignore it here for the sake of optimization
(address token, uint256 minAllowance) = abi.decode(_transaction.paymasterInput[4:68], (address, uint256));
address paymaster = address(uint160(_transaction.paymaster));
uint256 currentAllowance = IERC20(token).allowance(address(this), paymaster);
if (currentAllowance < minAllowance) {
// Some tokens, e.g. USDT require that the allowance is firsty set to zero
// and only then updated to the new value.
IERC20(token).safeApprove(paymaster, 0);
IERC20(token).safeApprove(paymaster, minAllowance);
}
} else if (paymasterInputSelector == IPaymasterFlow.general.selector) {
// Do nothing. general(bytes) paymaster flow means that the paymaster must interpret these bytes on his own.
} else {
revert("Unsupported paymaster flow");
}
}
/// @notice Pays the required fee for the transaction to the bootloader.
/// @dev Currently it pays the maximum amount "_transaction.maxFeePerGas * _transaction.gasLimit",
/// it will change in the future.
function payToTheBootloader(Transaction calldata _transaction) internal returns (bool success) {
address bootloaderAddr = BOOTLOADER_FORMAL_ADDRESS;
uint256 amount = _transaction.maxFeePerGas * _transaction.gasLimit;
assembly {
success := call(gas(), bootloaderAddr, amount, 0, 0, 0, 0)
}
}
// Returns the balance required to process the transaction.
function totalRequiredBalance(Transaction calldata _transaction) internal pure returns (uint256 requiredBalance) {
if (address(uint160(_transaction.paymaster)) != address(0)) {
// Paymaster pays for the fee
requiredBalance = _transaction.value;
} else {
// The user should have enough balance for both the fee and the value of the transaction
requiredBalance = _transaction.maxFeePerGas * _transaction.gasLimit + _transaction.value;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./interfaces/IAccountCodeStorage.sol";
import "./interfaces/INonceHolder.sol";
import "./interfaces/IContractDeployer.sol";
import "./interfaces/IKnownCodesStorage.sol";
import "./interfaces/IImmutableSimulator.sol";
import "./interfaces/IEthToken.sol";
import "./interfaces/IL1Messenger.sol";
import "./interfaces/ISystemContext.sol";
import "./interfaces/IBytecodeCompressor.sol";
import "./BootloaderUtilities.sol";
/// @dev All the system contracts introduced by zkSync have their addresses
/// started from 2^15 in order to avoid collision with Ethereum precompiles.
uint160 constant SYSTEM_CONTRACTS_OFFSET = 0x8000; // 2^15
/// @dev All the system contracts must be located in the kernel space,
/// i.e. their addresses must be below 2^16.
uint160 constant MAX_SYSTEM_CONTRACT_ADDRESS = 0xffff; // 2^16 - 1
address constant ECRECOVER_SYSTEM_CONTRACT = address(0x01);
address constant SHA256_SYSTEM_CONTRACT = address(0x02);
/// @dev The current maximum deployed precompile address.
/// Note: currently only two precompiles are deployed:
/// 0x01 - ecrecover
/// 0x02 - sha256
/// Important! So the constant should be updated if more precompiles are deployed.
uint256 constant CURRENT_MAX_PRECOMPILE_ADDRESS = uint256(uint160(SHA256_SYSTEM_CONTRACT));
address payable constant BOOTLOADER_FORMAL_ADDRESS = payable(address(SYSTEM_CONTRACTS_OFFSET + 0x01));
IAccountCodeStorage constant ACCOUNT_CODE_STORAGE_SYSTEM_CONTRACT = IAccountCodeStorage(
address(SYSTEM_CONTRACTS_OFFSET + 0x02)
);
INonceHolder constant NONCE_HOLDER_SYSTEM_CONTRACT = INonceHolder(address(SYSTEM_CONTRACTS_OFFSET + 0x03));
IKnownCodesStorage constant KNOWN_CODE_STORAGE_CONTRACT = IKnownCodesStorage(address(SYSTEM_CONTRACTS_OFFSET + 0x04));
IImmutableSimulator constant IMMUTABLE_SIMULATOR_SYSTEM_CONTRACT = IImmutableSimulator(
address(SYSTEM_CONTRACTS_OFFSET + 0x05)
);
IContractDeployer constant DEPLOYER_SYSTEM_CONTRACT = IContractDeployer(address(SYSTEM_CONTRACTS_OFFSET + 0x06));
// A contract that is allowed to deploy any codehash
// on any address. To be used only during an upgrade.
address constant FORCE_DEPLOYER = address(SYSTEM_CONTRACTS_OFFSET + 0x07);
IL1Messenger constant L1_MESSENGER_CONTRACT = IL1Messenger(address(SYSTEM_CONTRACTS_OFFSET + 0x08));
address constant MSG_VALUE_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x09);
IEthToken constant ETH_TOKEN_SYSTEM_CONTRACT = IEthToken(address(SYSTEM_CONTRACTS_OFFSET + 0x0a));
address constant KECCAK256_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x10);
ISystemContext constant SYSTEM_CONTEXT_CONTRACT = ISystemContext(payable(address(SYSTEM_CONTRACTS_OFFSET + 0x0b)));
BootloaderUtilities constant BOOTLOADER_UTILITIES = BootloaderUtilities(address(SYSTEM_CONTRACTS_OFFSET + 0x0c));
address constant EVENT_WRITER_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x0d);
IBytecodeCompressor constant BYTECODE_COMPRESSOR_CONTRACT = IBytecodeCompressor(
address(SYSTEM_CONTRACTS_OFFSET + 0x0e)
);
/// @dev If the bitwise AND of the extraAbi[2] param when calling the MSG_VALUE_SIMULATOR
/// is non-zero, the call will be assumed to be a system one.
uint256 constant MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT = 1;
/// @dev The maximal msg.value that context can have
uint256 constant MAX_MSG_VALUE = 2 ** 128 - 1;
/// @dev Prefix used during derivation of account addresses using CREATE2
/// @dev keccak256("zksyncCreate2")
bytes32 constant CREATE2_PREFIX = 0x2020dba91b30cc0006188af794c2fb30dd8520db7e2c088b7fc7c103c00ca494;
/// @dev Prefix used during derivation of account addresses using CREATE
/// @dev keccak256("zksyncCreate")
bytes32 constant CREATE_PREFIX = 0x63bae3a9951d38e8a3fbb7b70909afc1200610fc5bc55ade242f815974674f23;
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../libraries/TransactionHelper.sol";
enum ExecutionResult {
Revert,
Success
}
bytes4 constant PAYMASTER_VALIDATION_SUCCESS_MAGIC = IPaymaster.validateAndPayForPaymasterTransaction.selector;
interface IPaymaster {
/// @dev Called by the bootloader to verify that the paymaster agrees to pay for the
/// fee for the transaction. This transaction should also send the necessary amount of funds onto the bootloader
/// address.
/// @param _txHash The hash of the transaction
/// @param _suggestedSignedHash The hash of the transaction that is signed by an EOA
/// @param _transaction The transaction itself.
/// @return magic The value that should be equal to the signature of the validateAndPayForPaymasterTransaction
/// if the paymaster agrees to pay for the transaction.
/// @return context The "context" of the transaction: an array of bytes of length at most 1024 bytes, which will be
/// passed to the `postTransaction` method of the account.
/// @dev The developer should strive to preserve as many steps as possible both for valid
/// and invalid transactions as this very method is also used during the gas fee estimation
/// (without some of the necessary data, e.g. signature).
function validateAndPayForPaymasterTransaction(
bytes32 _txHash,
bytes32 _suggestedSignedHash,
Transaction calldata _transaction
) external payable returns (bytes4 magic, bytes memory context);
/// @dev Called by the bootloader after the execution of the transaction. Please note that
/// there is no guarantee that this method will be called at all. Unlike the original EIP4337,
/// this method won't be called if the transaction execution results in out-of-gas.
/// @param _context, the context of the execution, returned by the "validateAndPayForPaymasterTransaction" method.
/// @param _transaction, the users' transaction.
/// @param _txResult, the result of the transaction execution (success or failure).
/// @param _maxRefundedGas, the upper bound on the amout of gas that could be refunded to the paymaster.
/// @dev The exact amount refunded depends on the gas spent by the "postOp" itself and so the developers should
/// take that into account.
function postTransaction(
bytes calldata _context,
Transaction calldata _transaction,
bytes32 _txHash,
bytes32 _suggestedSignedHash,
ExecutionResult _txResult,
uint256 _maxRefundedGas
) external payable;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IContractDeployer {
/// @notice Defines the version of the account abstraction protocol
/// that a contract claims to follow.
/// - `None` means that the account is just a contract and it should never be interacted
/// with as a custom account
/// - `Version1` means that the account follows the first version of the account abstraction protocol
enum AccountAbstractionVersion {
None,
Version1
}
/// @notice Defines the nonce ordering used by the account
/// - `Sequential` means that it is expected that the nonces are monotonic and increment by 1
/// at a time (the same as EOAs).
/// - `Arbitrary` means that the nonces for the accounts can be arbitrary. The operator
/// should serve the transactions from such an account on a first-come-first-serve basis.
/// @dev This ordering is more of a suggestion to the operator on how the AA expects its transactions
/// to be processed and is not considered as a system invariant.
enum AccountNonceOrdering {
Sequential,
Arbitrary
}
struct AccountInfo {
AccountAbstractionVersion supportedAAVersion;
AccountNonceOrdering nonceOrdering;
}
event ContractDeployed(
address indexed deployerAddress,
bytes32 indexed bytecodeHash,
address indexed contractAddress
);
event AccountNonceOrderingUpdated(address indexed accountAddress, AccountNonceOrdering nonceOrdering);
event AccountVersionUpdated(address indexed accountAddress, AccountAbstractionVersion aaVersion);
function getNewAddressCreate2(
address _sender,
bytes32 _bytecodeHash,
bytes32 _salt,
bytes calldata _input
) external view returns (address newAddress);
function getNewAddressCreate(address _sender, uint256 _senderNonce) external pure returns (address newAddress);
function create2(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input
) external payable returns (address newAddress);
function create2Account(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input,
AccountAbstractionVersion _aaVersion
) external payable returns (address newAddress);
/// @dev While the `_salt` parameter is not used anywhere here,
/// it is still needed for consistency between `create` and
/// `create2` functions (required by the compiler).
function create(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input
) external payable returns (address newAddress);
/// @dev While `_salt` is never used here, we leave it here as a parameter
/// for the consistency with the `create` function.
function createAccount(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input,
AccountAbstractionVersion _aaVersion
) external payable returns (address newAddress);
/// @notice Returns the information about a certain AA.
function getAccountInfo(address _address) external view returns (AccountInfo memory info);
/// @notice Can be called by an account to update its account version
function updateAccountVersion(AccountAbstractionVersion _version) external;
/// @notice Can be called by an account to update its nonce ordering
function updateNonceOrdering(AccountNonceOrdering _nonceOrdering) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @author Matter Labs
* @dev The interface that is used for encoding/decoding of
* different types of paymaster flows.
* @notice This is NOT an interface to be implementated
* by contracts. It is just used for encoding.
*/
interface IPaymasterFlow {
function general(bytes calldata input) external;
function approvalBased(address _token, uint256 _minAllowance, bytes calldata _innerInput) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library RLPEncoder {
function encodeAddress(address _val) internal pure returns (bytes memory encoded) {
// The size is equal to 20 bytes of the address itself + 1 for encoding bytes length in RLP.
encoded = new bytes(0x15);
bytes20 shiftedVal = bytes20(_val);
assembly {
// In the first byte we write the encoded length as 0x80 + 0x14 == 0x94.
mstore(add(encoded, 0x20), 0x9400000000000000000000000000000000000000000000000000000000000000)
// Write address data without stripping zeros.
mstore(add(encoded, 0x21), shiftedVal)
}
}
function encodeUint256(uint256 _val) internal pure returns (bytes memory encoded) {
unchecked {
if (_val < 128) {
encoded = new bytes(1);
// Handle zero as a non-value, since stripping zeroes results in an empty byte array
encoded[0] = (_val == 0) ? bytes1(uint8(128)) : bytes1(uint8(_val));
} else {
uint256 hbs = _highestByteSet(_val);
encoded = new bytes(hbs + 2);
encoded[0] = bytes1(uint8(hbs + 0x81));
uint256 lbs = 31 - hbs;
uint256 shiftedVal = _val << (lbs * 8);
assembly {
mstore(add(encoded, 0x21), shiftedVal)
}
}
}
}
/// @notice Encodes the size of bytes in RLP format.
/// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported.
/// NOTE: panics if the length is 1 since the length encoding is ambiguous in this case.
function encodeNonSingleBytesLen(uint64 _len) internal pure returns (bytes memory) {
assert(_len != 1);
return _encodeLength(_len, 0x80);
}
/// @notice Encodes the size of list items in RLP format.
/// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported.
function encodeListLen(uint64 _len) internal pure returns (bytes memory) {
return _encodeLength(_len, 0xc0);
}
function _encodeLength(uint64 _len, uint256 _offset) private pure returns (bytes memory encoded) {
unchecked {
if (_len < 56) {
encoded = new bytes(1);
encoded[0] = bytes1(uint8(_len + _offset));
} else {
uint256 hbs = _highestByteSet(uint256(_len));
encoded = new bytes(hbs + 2);
encoded[0] = bytes1(uint8(_offset + hbs + 56));
uint256 lbs = 31 - hbs;
uint256 shiftedVal = uint256(_len) << (lbs * 8);
assembly {
mstore(add(encoded, 0x21), shiftedVal)
}
}
}
}
/// @notice Computes the index of the highest byte set in number.
/// @notice Uses little endian ordering (The least significant byte has index `0`).
/// NOTE: returns `0` for `0`
function _highestByteSet(uint256 _number) private pure returns (uint256 hbs) {
unchecked {
if (_number > type(uint128).max) {
_number >>= 128;
hbs += 16;
}
if (_number > type(uint64).max) {
_number >>= 64;
hbs += 8;
}
if (_number > type(uint32).max) {
_number >>= 32;
hbs += 4;
}
if (_number > type(uint16).max) {
_number >>= 16;
hbs += 2;
}
if (_number > type(uint8).max) {
hbs += 1;
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(
token,
abi.encodeWithSelector(token.transfer.selector, to, value)
);
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(
token,
abi.encodeWithSelector(token.transferFrom.selector, from, to, value)
);
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(
token,
abi.encodeWithSelector(token.approve.selector, spender, value)
);
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(
oldAllowance >= value,
"SafeERC20: decreased allowance below zero"
);
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(
nonceAfter == nonceBefore + 1,
"SafeERC20: permit did not succeed"
);
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(
data,
"SafeERC20: low-level call failed"
);
if (returndata.length > 0) {
// Return data is optional
require(
abi.decode(returndata, (bool)),
"SafeERC20: ERC20 operation did not succeed"
);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity ^0.8.0;
import "./SystemContractHelper.sol";
import "./Utils.sol";
import {SHA256_SYSTEM_CONTRACT, KECCAK256_SYSTEM_CONTRACT} from "../Constants.sol";
/**
* @author Matter Labs
* @notice This library is used to perform ultra-efficient calls using zkEVM-specific features.
* @dev EVM calls always accept a memory slice as input and return a memory slice as output.
* Therefore, even if the user has a ready-made calldata slice, they still need to copy it to memory
* before calling. This is especially inefficient for large inputs (proxies, multi-calls, etc.).
* In turn, zkEVM operates over a fat pointer, which is a set of (memory page, offset, start, length) in the memory/calldata/returndata.
* This allows forwarding the calldata slice as is, without copying it to memory.
* @dev Fat pointer is not just an integer, it is an extended data type supported on the VM level.
* zkEVM creates the wellformed fat pointers for all the calldata/returndata regions, later
* the contract may manipulate the already created fat pointers to forward a slice of the data, but not
* to create new fat pointers!
* @dev The allowed operation on fat pointers are:
* 1. `ptr.add` - Transforms `ptr.offset` into `ptr.offset + u32(_value)`. If overflow happens then it panics.
* 2. `ptr.sub` - Transforms `ptr.offset` into `ptr.offset - u32(_value)`. If underflow happens then it panics.
* 3. `ptr.pack` - Do the concatenation between the lowest 128 bits of the pointer itself and the highest 128 bits of `_value`. It is typically used to prepare the ABI for external calls.
* 4. `ptr.shrink` - Transforms `ptr.length` into `ptr.length - u32(_shrink)`. If underflow happens then it panics.
* @dev The call opcodes accept the fat pointer and change it to its canonical form before passing it to the child call
* 1. `ptr.start` is transformed into `ptr.offset + ptr.start`
* 2. `ptr.length` is transformed into `ptr.length - ptr.offset`
* 3. `ptr.offset` is transformed into `0`
*/
library EfficientCall {
/// @notice Call the `keccak256` without copying calldata to memory.
/// @param _data The preimage data.
/// @return The `keccak256` hash.
function keccak(bytes calldata _data) internal view returns (bytes32) {
bytes memory returnData = staticCall(gasleft(), KECCAK256_SYSTEM_CONTRACT, _data);
require(returnData.length == 32, "keccak256 returned invalid data");
return bytes32(returnData);
}
/// @notice Call the `sha256` precompile without copying calldata to memory.
/// @param _data The preimage data.
/// @return The `sha256` hash.
function sha(bytes calldata _data) internal view returns (bytes32) {
bytes memory returnData = staticCall(gasleft(), SHA256_SYSTEM_CONTRACT, _data);
require(returnData.length == 32, "sha returned invalid data");
return bytes32(returnData);
}
/// @notice Perform a `call` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _value The `msg.value` to send.
/// @param _data The calldata to use for the call.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return returnData The copied to memory return data.
function call(
uint256 _gas,
address _address,
uint256 _value,
bytes calldata _data,
bool _isSystem
) internal returns (bytes memory returnData) {
bool success = rawCall(_gas, _address, _value, _data, _isSystem);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `staticCall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return returnData The copied to memory return data.
function staticCall(
uint256 _gas,
address _address,
bytes calldata _data
) internal view returns (bytes memory returnData) {
bool success = rawStaticCall(_gas, _address, _data);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `delegateCall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return returnData The copied to memory return data.
function delegateCall(
uint256 _gas,
address _address,
bytes calldata _data
) internal returns (bytes memory returnData) {
bool success = rawDelegateCall(_gas, _address, _data);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `mimicCall` (a call with custom msg.sender) without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @param _whoToMimic The `msg.sender` for the next call.
/// @param _isConstructor Whether the call should contain the `isConstructor` flag.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return returnData The copied to memory return data.
function mimicCall(
uint256 _gas,
address _address,
bytes calldata _data,
address _whoToMimic,
bool _isConstructor,
bool _isSystem
) internal returns (bytes memory returnData) {
bool success = rawMimicCall(_gas, _address, _data, _whoToMimic, _isConstructor, _isSystem);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `call` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _value The `msg.value` to send.
/// @param _data The calldata to use for the call.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return success whether the call was successful.
function rawCall(
uint256 _gas,
address _address,
uint256 _value,
bytes calldata _data,
bool _isSystem
) internal returns (bool success) {
if (_value == 0) {
_loadFarCallABIIntoActivePtr(_gas, _data, false, _isSystem);
address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
assembly {
success := call(_address, callAddr, 0, 0, 0xFFFF, 0, 0)
}
} else {
_loadFarCallABIIntoActivePtr(_gas, _data, false, true);
// If there is provided `msg.value` call the `MsgValueSimulator` to forward ether.
address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT;
address callAddr = SYSTEM_CALL_BY_REF_CALL_ADDRESS;
// We need to supply the mask to the MsgValueSimulator to denote
// that the call should be a system one.
uint256 forwardMask = _isSystem ? MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT : 0;
assembly {
success := call(msgValueSimulator, callAddr, _value, _address, 0xFFFF, forwardMask, 0)
}
}
}
/// @notice Perform a `staticCall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return success whether the call was successful.
function rawStaticCall(uint256 _gas, address _address, bytes calldata _data) internal view returns (bool success) {
_loadFarCallABIIntoActivePtr(_gas, _data, false, false);
address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
assembly {
success := staticcall(_address, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Perform a `delegatecall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return success whether the call was successful.
function rawDelegateCall(uint256 _gas, address _address, bytes calldata _data) internal returns (bool success) {
_loadFarCallABIIntoActivePtr(_gas, _data, false, false);
address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
assembly {
success := delegatecall(_address, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Perform a `mimicCall` (call with custom msg.sender) without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @param _whoToMimic The `msg.sender` for the next call.
/// @param _isConstructor Whether the call should contain the `isConstructor` flag.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return success whether the call was successful.
/// @dev If called not in kernel mode, it will result in a revert (enforced by the VM)
function rawMimicCall(
uint256 _gas,
address _address,
bytes calldata _data,
address _whoToMimic,
bool _isConstructor,
bool _isSystem
) internal returns (bool success) {
_loadFarCallABIIntoActivePtr(_gas, _data, _isConstructor, _isSystem);
address callAddr = MIMIC_CALL_BY_REF_CALL_ADDRESS;
uint256 cleanupMask = ADDRESS_MASK;
assembly {
// Clearing values before usage in assembly, since Solidity
// doesn't do it by default
_whoToMimic := and(_whoToMimic, cleanupMask)
success := call(_address, callAddr, 0, 0, _whoToMimic, 0, 0)
}
}
/// @dev Verify that a low-level call was successful, and revert if it wasn't, by bubbling the revert reason.
/// @param _success Whether the call was successful.
/// @return returnData The copied to memory return data.
function _verifyCallResult(bool _success) private pure returns (bytes memory returnData) {
if (_success) {
uint256 size;
assembly {
size := returndatasize()
}
returnData = new bytes(size);
assembly {
returndatacopy(add(returnData, 0x20), 0, size)
}
} else {
propagateRevert();
}
}
/// @dev Propagate the revert reason from the current call to the caller.
function propagateRevert() internal pure {
assembly {
let size := returndatasize()
returndatacopy(0, 0, size)
revert(0, size)
}
}
/// @dev Load the far call ABI into active ptr, that will be used for the next call by reference.
/// @param _gas The gas to be passed to the call.
/// @param _data The calldata to be passed to the call.
/// @param _isConstructor Whether the call is a constructor call.
/// @param _isSystem Whether the call is a system call.
function _loadFarCallABIIntoActivePtr(
uint256 _gas,
bytes calldata _data,
bool _isConstructor,
bool _isSystem
) private view {
SystemContractHelper.loadCalldataIntoActivePtr();
// Currently, zkEVM considers the pointer valid if(ptr.offset < ptr.length || (ptr.length == 0 && ptr.offset == 0)), otherwise panics.
// So, if the data is empty we need to make the `ptr.length = ptr.offset = 0`, otherwise follow standard logic.
if (_data.length == 0) {
// Safe to cast, offset is never bigger than `type(uint32).max`
SystemContractHelper.ptrShrinkIntoActive(uint32(msg.data.length));
} else {
uint256 dataOffset;
assembly {
dataOffset := _data.offset
}
// Safe to cast, offset is never bigger than `type(uint32).max`
SystemContractHelper.ptrAddIntoActive(uint32(dataOffset));
// Safe to cast, `data.length` is never bigger than `type(uint32).max`
uint32 shrinkTo = uint32(msg.data.length - (_data.length + dataOffset));
SystemContractHelper.ptrShrinkIntoActive(shrinkTo);
}
uint32 gas = Utils.safeCastToU32(_gas);
uint256 farCallAbi = SystemContractsCaller.getFarCallABIWithEmptyFatPointer(
gas,
// Only rollup is supported for now
0,
CalldataForwardingMode.ForwardFatPointer,
_isConstructor,
_isSystem
);
SystemContractHelper.ptrPackIntoActivePtr(farCallAbi);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IAccountCodeStorage {
function storeAccountConstructingCodeHash(address _address, bytes32 _hash) external;
function storeAccountConstructedCodeHash(address _address, bytes32 _hash) external;
function markAccountCodeHashAsConstructed(address _address) external;
function getRawCodeHash(address _address) external view returns (bytes32 codeHash);
function getCodeHash(uint256 _input) external view returns (bytes32 codeHash);
function getCodeSize(uint256 _input) external view returns (uint256 codeSize);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./interfaces/IBootloaderUtilities.sol";
import "./libraries/TransactionHelper.sol";
import "./libraries/RLPEncoder.sol";
import "./libraries/EfficientCall.sol";
/**
* @author Matter Labs
* @notice A contract that provides some utility methods for the bootloader
* that is very hard to write in Yul.
*/
contract BootloaderUtilities is IBootloaderUtilities {
using TransactionHelper for *;
/// @notice Calculates the canonical transaction hash and the recommended transaction hash.
/// @param _transaction The transaction.
/// @return txHash and signedTxHash of the transaction, i.e. the transaction hash to be used in the explorer and commits to all
/// the fields of the transaction and the recommended hash to be signed for this transaction.
/// @dev txHash must be unique for all transactions.
function getTransactionHashes(
Transaction calldata _transaction
) external view override returns (bytes32 txHash, bytes32 signedTxHash) {
signedTxHash = _transaction.encodeHash();
if (_transaction.txType == EIP_712_TX_TYPE) {
txHash = keccak256(bytes.concat(signedTxHash, EfficientCall.keccak(_transaction.signature)));
} else if (_transaction.txType == LEGACY_TX_TYPE) {
txHash = encodeLegacyTransactionHash(_transaction);
} else if (_transaction.txType == EIP_1559_TX_TYPE) {
txHash = encodeEIP1559TransactionHash(_transaction);
} else if (_transaction.txType == EIP_2930_TX_TYPE) {
txHash = encodeEIP2930TransactionHash(_transaction);
} else {
revert("Unsupported tx type");
}
}
/// @notice Calculates the hash for a legacy transaction.
/// @param _transaction The legacy transaction.
/// @return txHash The hash of the transaction.
function encodeLegacyTransactionHash(Transaction calldata _transaction) internal view returns (bytes32 txHash) {
// Hash of legacy transactions are encoded as one of the:
// - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0)
// - RLP(nonce, gasPrice, gasLimit, to, value, data)
//
// In this RLP encoding, only the first one above list appears, so we encode each element
// inside list and then concatenate the length of all elements with them.
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
// Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error".
bytes memory encodedGasParam;
{
bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit);
}
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
bytes memory rEncoded;
{
uint256 rInt = uint256(bytes32(_transaction.signature[0:32]));
rEncoded = RLPEncoder.encodeUint256(rInt);
}
bytes memory sEncoded;
{
uint256 sInt = uint256(bytes32(_transaction.signature[32:64]));
sEncoded = RLPEncoder.encodeUint256(sInt);
}
bytes memory vEncoded;
{
uint256 vInt = uint256(uint8(_transaction.signature[64]));
require(vInt == 27 || vInt == 28, "Invalid v value");
// If the `chainId` is specified in the transaction, then the `v` value is encoded as
// `35 + y + 2 * chainId == vInt + 8 + 2 * chainId`, where y - parity bit (see EIP-155).
if (_transaction.reserved[0] != 0) {
vInt += 8 + block.chainid * 2;
}
vEncoded = RLPEncoder.encodeUint256(vInt);
}
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedNonce.length +
encodedGasParam.length +
encodedTo.length +
encodedValue.length +
encodedDataLength.length +
_transaction.data.length +
rEncoded.length +
sEncoded.length +
vEncoded.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
encodedListLength,
encodedNonce,
encodedGasParam,
encodedTo,
encodedValue,
encodedDataLength,
_transaction.data,
vEncoded,
rEncoded,
sEncoded
)
);
}
/// @notice Calculates the hash for an EIP2930 transaction.
/// @param _transaction The EIP2930 transaction.
/// @return txHash The hash of the transaction.
function encodeEIP2930TransactionHash(Transaction calldata _transaction) internal view returns (bytes32) {
// Encode all fixed-length params to avoid "stack too deep error"
bytes memory encodedFixedLengthParams;
{
bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
encodedFixedLengthParams = bytes.concat(
encodedChainId,
encodedNonce,
encodedGasPrice,
encodedGasLimit,
encodedTo,
encodedValue
);
}
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// On zkSync, access lists are always zero length (at least for now).
bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);
bytes memory rEncoded;
{
uint256 rInt = uint256(bytes32(_transaction.signature[0:32]));
rEncoded = RLPEncoder.encodeUint256(rInt);
}
bytes memory sEncoded;
{
uint256 sInt = uint256(bytes32(_transaction.signature[32:64]));
sEncoded = RLPEncoder.encodeUint256(sInt);
}
bytes memory vEncoded;
{
uint256 vInt = uint256(uint8(_transaction.signature[64]));
require(vInt == 27 || vInt == 28, "Invalid v value");
vEncoded = RLPEncoder.encodeUint256(vInt - 27);
}
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedFixedLengthParams.length +
encodedDataLength.length +
_transaction.data.length +
encodedAccessListLength.length +
rEncoded.length +
sEncoded.length +
vEncoded.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
"\x01",
encodedListLength,
encodedFixedLengthParams,
encodedDataLength,
_transaction.data,
encodedAccessListLength,
vEncoded,
rEncoded,
sEncoded
)
);
}
/// @notice Calculates the hash for an EIP1559 transaction.
/// @param _transaction The legacy transaction.
/// @return txHash The hash of the transaction.
function encodeEIP1559TransactionHash(Transaction calldata _transaction) internal view returns (bytes32) {
// The formula for hash of EIP1559 transaction in the original proposal:
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
// Encode all fixed-length params to avoid "stack too deep error"
bytes memory encodedFixedLengthParams;
{
bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas);
bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
encodedFixedLengthParams = bytes.concat(
encodedChainId,
encodedNonce,
encodedMaxPriorityFeePerGas,
encodedMaxFeePerGas,
encodedGasLimit,
encodedTo,
encodedValue
);
}
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// On zkSync, access lists are always zero length (at least for now).
bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);
bytes memory rEncoded;
{
uint256 rInt = uint256(bytes32(_transaction.signature[0:32]));
rEncoded = RLPEncoder.encodeUint256(rInt);
}
bytes memory sEncoded;
{
uint256 sInt = uint256(bytes32(_transaction.signature[32:64]));
sEncoded = RLPEncoder.encodeUint256(sInt);
}
bytes memory vEncoded;
{
uint256 vInt = uint256(uint8(_transaction.signature[64]));
require(vInt == 27 || vInt == 28, "Invalid v value");
vEncoded = RLPEncoder.encodeUint256(vInt - 27);
}
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedFixedLengthParams.length +
encodedDataLength.length +
_transaction.data.length +
encodedAccessListLength.length +
rEncoded.length +
sEncoded.length +
vEncoded.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return
keccak256(
bytes.concat(
"\x02",
encodedListLength,
encodedFixedLengthParams,
encodedDataLength,
_transaction.data,
encodedAccessListLength,
vEncoded,
rEncoded,
sEncoded
)
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @author Matter Labs
* @dev Interface of the nonce holder contract -- a contract used by the system to ensure
* that there is always a unique identifier for a transaction with a particular account (we call it nonce).
* In other words, the pair of (address, nonce) should always be unique.
* @dev Custom accounts should use methods of this contract to store nonces or other possible unique identifiers
* for the transaction.
*/
interface INonceHolder {
event ValueSetUnderNonce(address indexed accountAddress, uint256 indexed key, uint256 value);
/// @dev Returns the current minimal nonce for account.
function getMinNonce(address _address) external view returns (uint256);
/// @dev Returns the raw version of the current minimal nonce
/// (equal to minNonce + 2^128 * deployment nonce).
function getRawNonce(address _address) external view returns (uint256);
/// @dev Increases the minimal nonce for the msg.sender.
function increaseMinNonce(uint256 _value) external returns (uint256);
/// @dev Sets the nonce value `key` as used.
function setValueUnderNonce(uint256 _key, uint256 _value) external;
/// @dev Gets the value stored inside a custom nonce.
function getValueUnderNonce(uint256 _key) external view returns (uint256);
/// @dev A convenience method to increment the minimal nonce if it is equal
/// to the `_expectedNonce`.
function incrementMinNonceIfEquals(uint256 _expectedNonce) external;
/// @dev Returns the deployment nonce for the accounts used for CREATE opcode.
function getDeploymentNonce(address _address) external view returns (uint256);
/// @dev Increments the deployment nonce for the account and returns the previous one.
function incrementDeploymentNonce(address _address) external returns (uint256);
/// @dev Determines whether a certain nonce has been already used for an account.
function validateNonceUsage(address _address, uint256 _key, bool _shouldBeUsed) external view;
/// @dev Returns whether a nonce has been used for an account.
function isNonceUsed(address _address, uint256 _nonce) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IKnownCodesStorage {
event MarkedAsKnown(bytes32 indexed bytecodeHash, bool indexed sendBytecodeToL1);
function markFactoryDeps(bool _shouldSendToL1, bytes32[] calldata _hashes) external;
function markBytecodeAsPublished(
bytes32 _bytecodeHash,
bytes32 _l1PreimageHash,
uint256 _l1PreimageBytesLen
) external;
function getMarker(bytes32 _hash) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IL1Messenger {
// Possibly in the future we will be able to track the messages sent to L1 with
// some hooks in the VM. For now, it is much easier to track them with L2 events.
event L1MessageSent(address indexed _sender, bytes32 indexed _hash, bytes _message);
function sendToL1(bytes memory _message) external returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
struct ImmutableData {
uint256 index;
bytes32 value;
}
interface IImmutableSimulator {
function getImmutable(address _dest, uint256 _index) external view returns (bytes32);
function setImmutables(address _dest, ImmutableData[] calldata _immutables) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @author Matter Labs
* @notice Contract that stores some of the context variables, that may be either
* block-scoped, tx-scoped or system-wide.
*/
interface ISystemContext {
function chainId() external view returns (uint256);
function origin() external view returns (address);
function gasPrice() external view returns (uint256);
function blockGasLimit() external view returns (uint256);
function coinbase() external view returns (address);
function difficulty() external view returns (uint256);
function baseFee() external view returns (uint256);
function blockHash(uint256 _block) external view returns (bytes32);
function getBlockHashEVM(uint256 _block) external view returns (bytes32);
function getBlockNumberAndTimestamp() external view returns (uint256 blockNumber, uint256 blockTimestamp);
// Note, that for now, the implementation of the bootloader allows this variables to
// be incremented multiple times inside a block, so it should not relied upon right now.
function getBlockNumber() external view returns (uint256);
function getBlockTimestamp() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IEthToken {
function balanceOf(uint256) external view returns (uint256);
function transferFromTo(address _from, address _to, uint256 _amount) external;
function totalSupply() external view returns (uint256);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function mint(address _account, uint256 _amount) external;
function withdraw(address _l1Receiver) external payable;
event Mint(address indexed account, uint256 amount);
event Transfer(address indexed from, address indexed to, uint256 value);
event Withdrawal(address indexed _l2Sender, address indexed _l1Receiver, uint256 _amount);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IBytecodeCompressor {
function publishCompressedBytecode(
bytes calldata _bytecode,
bytes calldata _rawCompressedData
) external payable returns (bytes32 bytecodeHash);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(
address(this).balance >= amount,
"Address: insufficient balance"
);
(bool success, ) = recipient.call{value: amount}("");
require(
success,
"Address: unable to send value, recipient may have reverted"
);
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data)
internal
returns (bytes memory)
{
return
functionCallWithValue(
target,
data,
0,
"Address: low-level call failed"
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return
functionCallWithValue(
target,
data,
value,
"Address: low-level call with value failed"
);
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(
address(this).balance >= value,
"Address: insufficient balance for call"
);
(bool success, bytes memory returndata) = target.call{value: value}(
data
);
return
verifyCallResultFromTarget(
target,
success,
returndata,
errorMessage
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data)
internal
view
returns (bytes memory)
{
return
functionStaticCall(
target,
data,
"Address: low-level static call failed"
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return
verifyCallResultFromTarget(
target,
success,
returndata,
errorMessage
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data)
internal
returns (bytes memory)
{
return
functionDelegateCall(
target,
data,
"Address: low-level delegate call failed"
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return
verifyCallResultFromTarget(
target,
success,
returndata,
errorMessage
);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage)
private
pure
{
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
import "./EfficientCall.sol";
/**
* @author Matter Labs
* @dev Common utilities used in zkSync system contracts
*/
library Utils {
/// @dev Bit mask of bytecode hash "isConstructor" marker
bytes32 constant IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK =
0x00ff000000000000000000000000000000000000000000000000000000000000;
/// @dev Bit mask to set the "isConstructor" marker in the bytecode hash
bytes32 constant SET_IS_CONSTRUCTOR_MARKER_BIT_MASK =
0x0001000000000000000000000000000000000000000000000000000000000000;
function safeCastToU128(uint256 _x) internal pure returns (uint128) {
require(_x <= type(uint128).max, "Overflow");
return uint128(_x);
}
function safeCastToU32(uint256 _x) internal pure returns (uint32) {
require(_x <= type(uint32).max, "Overflow");
return uint32(_x);
}
function safeCastToU24(uint256 _x) internal pure returns (uint24) {
require(_x <= type(uint24).max, "Overflow");
return uint24(_x);
}
/// @return codeLength The bytecode length in bytes
function bytecodeLenInBytes(bytes32 _bytecodeHash) internal pure returns (uint256 codeLength) {
codeLength = bytecodeLenInWords(_bytecodeHash) << 5; // _bytecodeHash * 32
}
/// @return codeLengthInWords The bytecode length in machine words
function bytecodeLenInWords(bytes32 _bytecodeHash) internal pure returns (uint256 codeLengthInWords) {
unchecked {
codeLengthInWords = uint256(uint8(_bytecodeHash[2])) * 256 + uint256(uint8(_bytecodeHash[3]));
}
}
/// @notice Denotes whether bytecode hash corresponds to a contract that already constructed
function isContractConstructed(bytes32 _bytecodeHash) internal pure returns (bool) {
return _bytecodeHash[1] == 0x00;
}
/// @notice Denotes whether bytecode hash corresponds to a contract that is on constructor or has already been constructed
function isContractConstructing(bytes32 _bytecodeHash) internal pure returns (bool) {
return _bytecodeHash[1] == 0x01;
}
/// @notice Sets "isConstructor" flag to TRUE for the bytecode hash
/// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag
/// @return The bytecode hash with "isConstructor" flag set to TRUE
function constructingBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) {
// Clear the "isConstructor" marker and set it to 0x01.
return constructedBytecodeHash(_bytecodeHash) | SET_IS_CONSTRUCTOR_MARKER_BIT_MASK;
}
/// @notice Sets "isConstructor" flag to FALSE for the bytecode hash
/// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag
/// @return The bytecode hash with "isConstructor" flag set to FALSE
function constructedBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) {
return _bytecodeHash & ~IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK;
}
/// @notice Validate the bytecode format and calculate its hash.
/// @param _bytecode The bytecode to hash.
/// @return hashedBytecode The 32-byte hash of the bytecode.
/// Note: The function reverts the execution if the bytecode has non expected format:
/// - Bytecode bytes length is not a multiple of 32
/// - Bytecode bytes length is not less than 2^21 bytes (2^16 words)
/// - Bytecode words length is not odd
function hashL2Bytecode(bytes calldata _bytecode) internal view returns (bytes32 hashedBytecode) {
// Note that the length of the bytecode must be provided in 32-byte words.
require(_bytecode.length % 32 == 0, "po");
uint256 bytecodeLenInWords = _bytecode.length / 32;
require(bytecodeLenInWords < 2 ** 16, "pp"); // bytecode length must be less than 2^16 words
require(bytecodeLenInWords % 2 == 1, "pr"); // bytecode length in words must be odd
hashedBytecode =
EfficientCall.sha(_bytecode) &
0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
// Setting the version of the hash
hashedBytecode = (hashedBytecode | bytes32(uint256(1 << 248)));
// Setting the length
hashedBytecode = hashedBytecode | bytes32(bytecodeLenInWords << 224);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8;
import {MAX_SYSTEM_CONTRACT_ADDRESS, MSG_VALUE_SYSTEM_CONTRACT} from "../Constants.sol";
import "./SystemContractsCaller.sol";
import "./Utils.sol";
uint256 constant UINT32_MASK = 0xffffffff;
uint256 constant UINT128_MASK = 0xffffffffffffffffffffffffffffffff;
/// @dev The mask that is used to convert any uint256 to a proper address.
/// It needs to be padded with `00` to be treated as uint256 by Solidity
uint256 constant ADDRESS_MASK = 0x00ffffffffffffffffffffffffffffffffffffffff;
struct ZkSyncMeta {
uint32 gasPerPubdataByte;
uint32 heapSize;
uint32 auxHeapSize;
uint8 shardId;
uint8 callerShardId;
uint8 codeShardId;
}
enum Global {
CalldataPtr,
CallFlags,
ExtraABIData1,
ExtraABIData2,
ReturndataPtr
}
/**
* @author Matter Labs
* @notice Library used for accessing zkEVM-specific opcodes, needed for the development
* of system contracts.
* @dev While this library will be eventually available to public, some of the provided
* methods won't work for non-system contracts. We will not recommend this library
* for external use.
*/
library SystemContractHelper {
/// @notice Send an L2Log to L1.
/// @param _isService The `isService` flag.
/// @param _key The `key` part of the L2Log.
/// @param _value The `value` part of the L2Log.
/// @dev The meaning of all these parameters is context-dependent, but they
/// have no intrinsic meaning per se.
function toL1(bool _isService, bytes32 _key, bytes32 _value) internal {
address callAddr = TO_L1_CALL_ADDRESS;
assembly {
// Ensuring that the type is bool
_isService := and(_isService, 1)
// This `success` is always 0, but the method always succeeds
// (except for the cases when there is not enough gas)
let success := call(_isService, callAddr, _key, _value, 0xFFFF, 0, 0)
}
}
/// @notice Get address of the currently executed code.
/// @dev This allows differentiating between `call` and `delegatecall`.
/// During the former `this` and `codeAddress` are the same, while
/// during the latter they are not.
function getCodeAddress() internal view returns (address addr) {
address callAddr = CODE_ADDRESS_CALL_ADDRESS;
assembly {
addr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Provide a compiler hint, by placing calldata fat pointer into virtual `ACTIVE_PTR`,
/// that can be manipulated by `ptr.add`/`ptr.sub`/`ptr.pack`/`ptr.shrink` later.
/// @dev This allows making a call by forwarding calldata pointer to the child call.
/// It is a much more efficient way to forward calldata, than standard EVM bytes copying.
function loadCalldataIntoActivePtr() internal view {
address callAddr = LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS;
assembly {
pop(staticcall(0, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice Compiler simulation of the `ptr.pack` opcode for the virtual `ACTIVE_PTR` pointer.
/// @dev Do the concatenation between lowest part of `ACTIVE_PTR` and highest part of `_farCallAbi`
/// forming packed fat pointer for a far call or ret ABI when necessary.
/// Note: Panics if the lowest 128 bits of `_farCallAbi` are not zeroes.
function ptrPackIntoActivePtr(uint256 _farCallAbi) internal view {
address callAddr = PTR_PACK_INTO_ACTIVE_CALL_ADDRESS;
assembly {
pop(staticcall(_farCallAbi, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice Compiler simulation of the `ptr.add` opcode for the virtual `ACTIVE_PTR` pointer.
/// @dev Transforms `ACTIVE_PTR.offset` into `ACTIVE_PTR.offset + u32(_value)`. If overflow happens then it panics.
function ptrAddIntoActive(uint32 _value) internal view {
address callAddr = PTR_ADD_INTO_ACTIVE_CALL_ADDRESS;
uint256 cleanupMask = UINT32_MASK;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_value := and(_value, cleanupMask)
pop(staticcall(_value, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice Compiler simulation of the `ptr.shrink` opcode for the virtual `ACTIVE_PTR` pointer.
/// @dev Transforms `ACTIVE_PTR.length` into `ACTIVE_PTR.length - u32(_shrink)`. If underflow happens then it panics.
function ptrShrinkIntoActive(uint32 _shrink) internal view {
address callAddr = PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS;
uint256 cleanupMask = UINT32_MASK;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_shrink := and(_shrink, cleanupMask)
pop(staticcall(_shrink, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice packs precompile parameters into one word
/// @param _inputMemoryOffset The memory offset in 32-byte words for the input data for calling the precompile.
/// @param _inputMemoryLength The length of the input data in words.
/// @param _outputMemoryOffset The memory offset in 32-byte words for the output data.
/// @param _outputMemoryLength The length of the output data in words.
/// @param _perPrecompileInterpreted The constant, the meaning of which is defined separately for
/// each precompile. For information, please read the documentation of the precompilecall log in
/// the VM.
function packPrecompileParams(
uint32 _inputMemoryOffset,
uint32 _inputMemoryLength,
uint32 _outputMemoryOffset,
uint32 _outputMemoryLength,
uint64 _perPrecompileInterpreted
) internal pure returns (uint256 rawParams) {
rawParams = _inputMemoryOffset;
rawParams |= uint256(_inputMemoryLength) << 32;
rawParams |= uint256(_outputMemoryOffset) << 64;
rawParams |= uint256(_outputMemoryLength) << 96;
rawParams |= uint256(_perPrecompileInterpreted) << 192;
}
/// @notice Call precompile with given parameters.
/// @param _rawParams The packed precompile params. They can be retrieved by
/// the `packPrecompileParams` method.
/// @param _gasToBurn The number of gas to burn during this call.
/// @return success Whether the call was successful.
/// @dev The list of currently available precompiles sha256, keccak256, ecrecover.
/// NOTE: The precompile type depends on `this` which calls precompile, which means that only
/// system contracts corresponding to the list of precompiles above can do `precompileCall`.
/// @dev If used not in the `sha256`, `keccak256` or `ecrecover` contracts, it will just burn the gas provided.
function precompileCall(uint256 _rawParams, uint32 _gasToBurn) internal view returns (bool success) {
address callAddr = PRECOMPILE_CALL_ADDRESS;
// After `precompileCall` gas will be burned down to 0 if there are not enough of them,
// thats why it should be checked before the call.
require(gasleft() >= _gasToBurn);
uint256 cleanupMask = UINT32_MASK;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_gasToBurn := and(_gasToBurn, cleanupMask)
success := staticcall(_rawParams, callAddr, _gasToBurn, 0xFFFF, 0, 0)
}
}
/// @notice Set `msg.value` to next far call.
/// @param _value The msg.value that will be used for the *next* call.
/// @dev If called not in kernel mode, it will result in a revert (enforced by the VM)
function setValueForNextFarCall(uint128 _value) internal returns (bool success) {
uint256 cleanupMask = UINT128_MASK;
address callAddr = SET_CONTEXT_VALUE_CALL_ADDRESS;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_value := and(_value, cleanupMask)
success := call(0, callAddr, _value, 0, 0xFFFF, 0, 0)
}
}
/// @notice Initialize a new event.
/// @param initializer The event initializing value.
/// @param value1 The first topic or data chunk.
function eventInitialize(uint256 initializer, uint256 value1) internal {
address callAddr = EVENT_INITIALIZE_ADDRESS;
assembly {
pop(call(initializer, callAddr, value1, 0, 0xFFFF, 0, 0))
}
}
/// @notice Continue writing the previously initialized event.
/// @param value1 The first topic or data chunk.
/// @param value2 The second topic or data chunk.
function eventWrite(uint256 value1, uint256 value2) internal {
address callAddr = EVENT_WRITE_ADDRESS;
assembly {
pop(call(value1, callAddr, value2, 0, 0xFFFF, 0, 0))
}
}
/// @notice Get the packed representation of the `ZkSyncMeta` from the current context.
/// @return meta The packed representation of the ZkSyncMeta.
/// @dev The fields in ZkSyncMeta are NOT tightly packed, i.e. there is a special rule on how
/// they are packed. For more information, please read the documentation on ZkSyncMeta.
function getZkSyncMetaBytes() internal view returns (uint256 meta) {
address callAddr = META_CALL_ADDRESS;
assembly {
meta := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Returns the bits [offset..offset+size-1] of the meta.
/// @param meta Packed representation of the ZkSyncMeta.
/// @param offset The offset of the bits.
/// @param size The size of the extracted number in bits.
/// @return result The extracted number.
function extractNumberFromMeta(uint256 meta, uint256 offset, uint256 size) internal pure returns (uint256 result) {
// Firstly, we delete all the bits after the field
uint256 shifted = (meta << (256 - size - offset));
// Then we shift everything back
result = (shifted >> (256 - size));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of gas
/// that a single byte sent to L1 as pubdata costs.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return gasPerPubdataByte The current price in gas per pubdata byte.
function getGasPerPubdataByteFromMeta(uint256 meta) internal pure returns (uint32 gasPerPubdataByte) {
gasPerPubdataByte = uint32(extractNumberFromMeta(meta, META_GAS_PER_PUBDATA_BYTE_OFFSET, 32));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size
/// of the heap in bytes.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return heapSize The size of the memory in bytes byte.
/// @dev The following expression: getHeapSizeFromMeta(getZkSyncMetaBytes()) is
/// equivalent to the MSIZE in Solidity.
function getHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 heapSize) {
heapSize = uint32(extractNumberFromMeta(meta, META_HEAP_SIZE_OFFSET, 32));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size
/// of the auxilary heap in bytes.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return auxHeapSize The size of the auxilary memory in bytes byte.
/// @dev You can read more on auxilary memory in the VM1.2 documentation.
function getAuxHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 auxHeapSize) {
auxHeapSize = uint32(extractNumberFromMeta(meta, META_AUX_HEAP_SIZE_OFFSET, 32));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of `this`.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return shardId The shardId of `this`.
/// @dev Currently only shard 0 (zkRollup) is supported.
function getShardIdFromMeta(uint256 meta) internal pure returns (uint8 shardId) {
shardId = uint8(extractNumberFromMeta(meta, META_SHARD_ID_OFFSET, 8));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of
/// the msg.sender.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return callerShardId The shardId of the msg.sender.
/// @dev Currently only shard 0 (zkRollup) is supported.
function getCallerShardIdFromMeta(uint256 meta) internal pure returns (uint8 callerShardId) {
callerShardId = uint8(extractNumberFromMeta(meta, META_CALLER_SHARD_ID_OFFSET, 8));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of
/// the currently executed code.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return codeShardId The shardId of the currently executed code.
/// @dev Currently only shard 0 (zkRollup) is supported.
function getCodeShardIdFromMeta(uint256 meta) internal pure returns (uint8 codeShardId) {
codeShardId = uint8(extractNumberFromMeta(meta, META_CODE_SHARD_ID_OFFSET, 8));
}
/// @notice Retrieves the ZkSyncMeta structure.
/// @return meta The ZkSyncMeta execution context parameters.
function getZkSyncMeta() internal view returns (ZkSyncMeta memory meta) {
uint256 metaPacked = getZkSyncMetaBytes();
meta.gasPerPubdataByte = getGasPerPubdataByteFromMeta(metaPacked);
meta.shardId = getShardIdFromMeta(metaPacked);
meta.callerShardId = getCallerShardIdFromMeta(metaPacked);
meta.codeShardId = getCodeShardIdFromMeta(metaPacked);
}
/// @notice Returns the call flags for the current call.
/// @return callFlags The bitmask of the callflags.
/// @dev Call flags is the value of the first register
/// at the start of the call.
/// @dev The zero bit of the callFlags indicates whether the call is
/// a constructor call. The first bit of the callFlags indicates whether
/// the call is a system one.
function getCallFlags() internal view returns (uint256 callFlags) {
address callAddr = CALLFLAGS_CALL_ADDRESS;
assembly {
callFlags := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Returns the current calldata pointer.
/// @return ptr The current calldata pointer.
/// @dev NOTE: This file is just an integer and it can not be used
/// to forward the calldata to the next calls in any way.
function getCalldataPtr() internal view returns (uint256 ptr) {
address callAddr = PTR_CALLDATA_CALL_ADDRESS;
assembly {
ptr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Returns the N-th extraAbiParam for the current call.
/// @return extraAbiData The value of the N-th extraAbiParam for this call.
/// @dev It is equal to the value of the (N+2)-th register
/// at the start of the call.
function getExtraAbiData(uint256 index) internal view returns (uint256 extraAbiData) {
require(index < 10, "There are only 10 accessible registers");
address callAddr = GET_EXTRA_ABI_DATA_ADDRESS;
assembly {
extraAbiData := staticcall(index, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Retuns whether the current call is a system call.
/// @return `true` or `false` based on whether the current call is a system call.
function isSystemCall() internal view returns (bool) {
uint256 callFlags = getCallFlags();
// When the system call is passed, the 2-bit it set to 1
return (callFlags & 2) != 0;
}
/// @notice Returns whether the address is a system contract.
/// @param _address The address to test
/// @return `true` or `false` based on whether the `_address` is a system contract.
function isSystemContract(address _address) internal pure returns (bool) {
return uint160(_address) <= uint160(MAX_SYSTEM_CONTRACT_ADDRESS);
}
}
/// @dev Solidity does not allow exporting modifiers via libraries, so
/// the only way to do reuse modifiers is to have a base contract
abstract contract ISystemContract {
/// @notice Modifier that makes sure that the method
/// can only be called via a system call.
modifier onlySystemCall() {
require(
SystemContractHelper.isSystemCall() || SystemContractHelper.isSystemContract(msg.sender),
"This method require system call flag"
);
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../libraries/TransactionHelper.sol";
interface IBootloaderUtilities {
function getTransactionHashes(
Transaction calldata _transaction
) external view returns (bytes32 txHash, bytes32 signedTxHash);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8;
import {MSG_VALUE_SYSTEM_CONTRACT, MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT} from "../Constants.sol";
import "./Utils.sol";
// Addresses used for the compiler to be replaced with the
// zkSync-specific opcodes during the compilation.
// IMPORTANT: these are just compile-time constants and are used
// only if used in-place by Yul optimizer.
address constant TO_L1_CALL_ADDRESS = address((1 << 16) - 1);
address constant CODE_ADDRESS_CALL_ADDRESS = address((1 << 16) - 2);
address constant PRECOMPILE_CALL_ADDRESS = address((1 << 16) - 3);
address constant META_CALL_ADDRESS = address((1 << 16) - 4);
address constant MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 5);
address constant SYSTEM_MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 6);
address constant MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 7);
address constant SYSTEM_MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 8);
address constant RAW_FAR_CALL_CALL_ADDRESS = address((1 << 16) - 9);
address constant RAW_FAR_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 10);
address constant SYSTEM_CALL_CALL_ADDRESS = address((1 << 16) - 11);
address constant SYSTEM_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 12);
address constant SET_CONTEXT_VALUE_CALL_ADDRESS = address((1 << 16) - 13);
address constant SET_PUBDATA_PRICE_CALL_ADDRESS = address((1 << 16) - 14);
address constant INCREMENT_TX_COUNTER_CALL_ADDRESS = address((1 << 16) - 15);
address constant PTR_CALLDATA_CALL_ADDRESS = address((1 << 16) - 16);
address constant CALLFLAGS_CALL_ADDRESS = address((1 << 16) - 17);
address constant PTR_RETURNDATA_CALL_ADDRESS = address((1 << 16) - 18);
address constant EVENT_INITIALIZE_ADDRESS = address((1 << 16) - 19);
address constant EVENT_WRITE_ADDRESS = address((1 << 16) - 20);
address constant LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 21);
address constant LOAD_LATEST_RETURNDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 22);
address constant PTR_ADD_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 23);
address constant PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 24);
address constant PTR_PACK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 25);
address constant MULTIPLICATION_HIGH_ADDRESS = address((1 << 16) - 26);
address constant GET_EXTRA_ABI_DATA_ADDRESS = address((1 << 16) - 27);
// All the offsets are in bits
uint256 constant META_GAS_PER_PUBDATA_BYTE_OFFSET = 0 * 8;
uint256 constant META_HEAP_SIZE_OFFSET = 8 * 8;
uint256 constant META_AUX_HEAP_SIZE_OFFSET = 12 * 8;
uint256 constant META_SHARD_ID_OFFSET = 28 * 8;
uint256 constant META_CALLER_SHARD_ID_OFFSET = 29 * 8;
uint256 constant META_CODE_SHARD_ID_OFFSET = 30 * 8;
/// @notice The way to forward the calldata:
/// - Use the current heap (i.e. the same as on EVM).
/// - Use the auxiliary heap.
/// - Forward via a pointer
/// @dev Note, that currently, users do not have access to the auxiliary
/// heap and so the only type of forwarding that will be used by the users
/// are UseHeap and ForwardFatPointer for forwarding a slice of the current calldata
/// to the next call.
enum CalldataForwardingMode {
UseHeap,
ForwardFatPointer,
UseAuxHeap
}
/**
* @author Matter Labs
* @notice A library that allows calling contracts with the `isSystem` flag.
* @dev It is needed to call ContractDeployer and NonceHolder.
*/
library SystemContractsCaller {
/// @notice Makes a call with the `isSystem` flag.
/// @param gasLimit The gas limit for the call.
/// @param to The address to call.
/// @param value The value to pass with the transaction.
/// @param data The calldata.
/// @return success Whether the transaction has been successful.
/// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
function systemCall(uint32 gasLimit, address to, uint256 value, bytes memory data) internal returns (bool success) {
address callAddr = SYSTEM_CALL_CALL_ADDRESS;
uint32 dataStart;
assembly {
dataStart := add(data, 0x20)
}
uint32 dataLength = uint32(Utils.safeCastToU32(data.length));
uint256 farCallAbi = SystemContractsCaller.getFarCallABI(
0,
0,
dataStart,
dataLength,
gasLimit,
// Only rollup is supported for now
0,
CalldataForwardingMode.UseHeap,
false,
true
);
if (value == 0) {
// Doing the system call directly
assembly {
success := call(to, callAddr, 0, 0, farCallAbi, 0, 0)
}
} else {
address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT;
// We need to supply the mask to the MsgValueSimulator to denote
// that the call should be a system one.
uint256 forwardMask = MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT;
assembly {
success := call(msgValueSimulator, callAddr, value, to, farCallAbi, forwardMask, 0)
}
}
}
/// @notice Makes a call with the `isSystem` flag.
/// @param gasLimit The gas limit for the call.
/// @param to The address to call.
/// @param value The value to pass with the transaction.
/// @param data The calldata.
/// @return success Whether the transaction has been successful.
/// @return returnData The returndata of the transaction (revert reason in case the transaction has failed).
/// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
function systemCallWithReturndata(
uint32 gasLimit,
address to,
uint128 value,
bytes memory data
) internal returns (bool success, bytes memory returnData) {
success = systemCall(gasLimit, to, value, data);
uint256 size;
assembly {
size := returndatasize()
}
returnData = new bytes(size);
assembly {
returndatacopy(add(returnData, 0x20), 0, size)
}
}
/// @notice Makes a call with the `isSystem` flag.
/// @param gasLimit The gas limit for the call.
/// @param to The address to call.
/// @param value The value to pass with the transaction.
/// @param data The calldata.
/// @return returnData The returndata of the transaction. In case the transaction reverts, the error
/// bubbles up to the parent frame.
/// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
function systemCallWithPropagatedRevert(
uint32 gasLimit,
address to,
uint128 value,
bytes memory data
) internal returns (bytes memory returnData) {
bool success;
(success, returnData) = systemCallWithReturndata(gasLimit, to, value, data);
if (!success) {
assembly {
let size := mload(returnData)
revert(add(returnData, 0x20), size)
}
}
}
/// @notice Calculates the packed representation of the FarCallABI.
/// @param dataOffset Calldata offset in memory. Provide 0 unless using custom pointer.
/// @param memoryPage Memory page to use. Provide 0 unless using custom pointer.
/// @param dataStart The start of the calldata slice. Provide the offset in memory
/// if not using custom pointer.
/// @param dataLength The calldata length. Provide the length of the calldata in bytes
/// unless using custom pointer.
/// @param gasPassed The gas to pass with the call.
/// @param shardId Of the account to call. Currently only 0 is supported.
/// @param forwardingMode The forwarding mode to use:
/// - provide CalldataForwardingMode.UseHeap when using your current memory
/// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer.
/// @param isConstructorCall Whether the call will be a call to the constructor
/// (ignored when the caller is not a system contract).
/// @param isSystemCall Whether the call will have the `isSystem` flag.
/// @return farCallAbi The far call ABI.
/// @dev The `FarCallABI` has the following structure:
/// pub struct FarCallABI {
/// pub memory_quasi_fat_pointer: FatPointer,
/// pub gas_passed: u32,
/// pub shard_id: u8,
/// pub forwarding_mode: FarCallForwardPageType,
/// pub constructor_call: bool,
/// pub to_system: bool,
/// }
///
/// The FatPointer struct:
///
/// pub struct FatPointer {
/// pub offset: u32, // offset relative to `start`
/// pub memory_page: u32, // memory page where slice is located
/// pub start: u32, // absolute start of the slice
/// pub length: u32, // length of the slice
/// }
///
/// @dev Note, that the actual layout is the following:
///
/// [0..32) bits -- the calldata offset
/// [32..64) bits -- the memory page to use. Can be left blank in most of the cases.
/// [64..96) bits -- the absolute start of the slice
/// [96..128) bits -- the length of the slice.
/// [128..192) bits -- empty bits.
/// [192..224) bits -- gasPassed.
/// [224..232) bits -- forwarding_mode
/// [232..240) bits -- shard id.
/// [240..248) bits -- constructor call flag
/// [248..256] bits -- system call flag
function getFarCallABI(
uint32 dataOffset,
uint32 memoryPage,
uint32 dataStart,
uint32 dataLength,
uint32 gasPassed,
uint8 shardId,
CalldataForwardingMode forwardingMode,
bool isConstructorCall,
bool isSystemCall
) internal pure returns (uint256 farCallAbi) {
// Fill in the call parameter fields
farCallAbi = getFarCallABIWithEmptyFatPointer(
gasPassed,
shardId,
forwardingMode,
isConstructorCall,
isSystemCall
);
// Fill in the fat pointer fields
farCallAbi |= dataOffset;
farCallAbi |= (uint256(memoryPage) << 32);
farCallAbi |= (uint256(dataStart) << 64);
farCallAbi |= (uint256(dataLength) << 96);
}
/// @notice Calculates the packed representation of the FarCallABI with zero fat pointer fields.
/// @param gasPassed The gas to pass with the call.
/// @param shardId Of the account to call. Currently only 0 is supported.
/// @param forwardingMode The forwarding mode to use:
/// - provide CalldataForwardingMode.UseHeap when using your current memory
/// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer.
/// @param isConstructorCall Whether the call will be a call to the constructor
/// (ignored when the caller is not a system contract).
/// @param isSystemCall Whether the call will have the `isSystem` flag.
/// @return farCallAbiWithEmptyFatPtr The far call ABI with zero fat pointer fields.
function getFarCallABIWithEmptyFatPointer(
uint32 gasPassed,
uint8 shardId,
CalldataForwardingMode forwardingMode,
bool isConstructorCall,
bool isSystemCall
) internal pure returns (uint256 farCallAbiWithEmptyFatPtr) {
farCallAbiWithEmptyFatPtr |= (uint256(gasPassed) << 192);
farCallAbiWithEmptyFatPtr |= (uint256(forwardingMode) << 224);
farCallAbiWithEmptyFatPtr |= (uint256(shardId) << 232);
if (isConstructorCall) {
farCallAbiWithEmptyFatPtr |= (1 << 240);
}
if (isSystemCall) {
farCallAbiWithEmptyFatPtr |= (1 << 248);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}