Abstract Testnet

Contract Diff Checker

Contract Name:
Huego

Contract Source Code:

// there are 2 gameSessions played per session
// first 4 turns are placing 4x1 blocks flat
// next 24 turns are placing 2x1 blocks any rotation
// at this point game starts another game
// first 4 turns are placing 4x1 blocks flat
// next 24 turns are placing 2x1 blocks any rotation

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

contract Huego {
    using SafeERC20 for IERC20;

    uint8 constant GRID_SIZE = 8;
    uint256 public timeLimit = 600; // 10 minutes per player
    address public owner;
    uint256 public feePercentage = 500; // 5%

    modifier onlyOwner() {
        require(msg.sender == owner, "Not the owner");
        _;
    }

    event BlockPlaced(uint256 indexed sessionId, uint8 indexed game, uint8 turn, uint8 pieceType, uint8 x, uint8 z, uint8 y, Rotation rotation);


    struct WagerInfo {
        uint256 amount;
        bool processed;     // To prevent double-processing
    }

    struct WagerProposal {
        uint256 sessionId;
        uint256 amount;
    }
    
    struct GameSession {
        address player1;
        address player2;
        WagerInfo wager;
        uint8 turn;
        uint8 game; // either 0 or 1
        uint256 gameStartTime;
        uint256 lastMoveTime;
        uint256 timeRemainingP1;
        uint256 timeRemainingP2;
        bool gameEnded;
        topStack[][] initialStacks; // basically [2][16]
    }

    struct topStack {
        uint8 x;
        uint8 z;
        uint8 y;
        uint8 color;
    }

    // wager proposals maps address and sessionId to the wager proposal
    mapping(address => mapping(uint256 => WagerProposal)) public wagerProposals;
    // lets map user to their gameSession
    mapping(address => uint256) public userGameSession;

    struct GameGrid {
        topStack[8][8] grid;
    }
    // GameSession ID -> [game0, game1] -> 8x8 grid
    mapping(uint256 => GameGrid[2]) private stacksGrid;
    GameSession[] public gameSessions; // List of gameSessions

    // Colors: 0 = empty, 1 = yellow, 2 = purple, 3 = orange, 4 = green
    enum Rotation {X, Z, Y}

    constructor() {
        owner = msg.sender;
        // lets create a dummy gameSession to start from 1
        gameSessions.push();
    }

    function getInitialStacks(uint256 sessionId, uint8 game) external view returns (topStack[] memory) {
        return gameSessions[sessionId].initialStacks[game];
    }
    function getStacksGrid(uint256 sessionId, uint8 game) external view returns (topStack[8][8] memory) {
        return stacksGrid[sessionId][game].grid;
    }

    function proposeWager(uint256 sessionId, uint256 _amount) public payable {
        _proposeWager(sessionId, _amount, msg.sender);
    }

    function acceptWagerProposal(uint256 sessionId, uint256 _amount) public payable {
        _acceptWager(sessionId, _amount, msg.sender);
    }

    function acceptAndProposeWager(uint256 sessionId, uint256 _amount) external payable {
        _acceptWager(sessionId, _amount, msg.sender);
        _proposeWager(sessionId, _amount, msg.sender);
    }

    // Internal helper functions to reduce redundancy
    function _proposeWager(uint256 sessionId, uint256 _amount, address sender) internal {
        require(sender == gameSessions[sessionId].player1 || sender == gameSessions[sessionId].player2, "Not a player of this game");
        require(msg.value == _amount, "Wager amount mismatch");

        uint currentWagerAmount = wagerProposals[sender][sessionId].amount;
        wagerProposals[sender][sessionId] = WagerProposal({
            sessionId: sessionId,
            amount: _amount
        });

        if (currentWagerAmount != 0) {
            (bool success,) = payable(sender).call{value: currentWagerAmount}("");
            require(success, "Refund failed");
        }
    }

    function _acceptWager(uint256 sessionId, uint256 _amount, address sender) internal {
        address proposer = (sender == gameSessions[sessionId].player1) ? gameSessions[sessionId].player2 : gameSessions[sessionId].player1;
        require(wagerProposals[proposer][sessionId].amount != 0, "No wager proposal");
        require(!gameSessions[sessionId].wager.processed, "Wager already processed");
        require(msg.value == wagerProposals[proposer][sessionId].amount, "Wager amount mismatch");
        require(_amount == wagerProposals[proposer][sessionId].amount, "Wager amount mismatch");

        gameSessions[sessionId].wager.amount += wagerProposals[proposer][sessionId].amount;
        delete wagerProposals[proposer][sessionId];

        // Refund any previous proposal from the sender
        if (wagerProposals[sender][sessionId].amount != 0) {
            (bool success,) = payable(sender).call{value: wagerProposals[sender][sessionId].amount}("");
            require(success, "Refund failed");
            delete wagerProposals[sender][sessionId];
        }
    }


    function cancelWagerProposal(uint256 sessionId) external {
        require(wagerProposals[msg.sender][sessionId].amount != 0, "No wager proposal exists");
        // refund the player
        (bool success,) = payable(msg.sender).call{value: wagerProposals[msg.sender][sessionId].amount}("");
        require(success, "Transfer failed");
        delete wagerProposals[msg.sender][sessionId];
    }
    
    function placeInitial4x1Stack(uint256 sessionId, uint8 game, uint8 x, uint8 z, uint8 color) internal {
        require(game < 2, "Invalid game index");
        require(x + 1 < GRID_SIZE && z + 1 < GRID_SIZE, "Invalid coordinates");

        require(stacksGrid[sessionId][game].grid[x][z].color == 0, "Grid has a stack");
        require(stacksGrid[sessionId][game].grid[x + 1][z].color == 0, "Grid has a stack");
        require(stacksGrid[sessionId][game].grid[x][z + 1].color == 0, "Grid has a stack");
        require(stacksGrid[sessionId][game].grid[x + 1][z + 1].color == 0, "Grid has a stack");

        topStack memory stack1 = topStack(x, z, 0, color);
        topStack memory stack2 = topStack(x + 1, z, 0, color);
        topStack memory stack3 = topStack(x, z + 1, 0, color);
        topStack memory stack4 = topStack(x + 1, z + 1, 0, color);

        // If it's not the first placement, check for a valid neighbor
        if (gameSessions[sessionId].turn > 1) {
            // Predefined offsets for the 8 unique neighboring positions
            int8[8] memory dx = [ int8(-1), int8(-1), int8(0), int8(0), int8(2), int8(2), int8(0), int8(1)];
            int8[8] memory dz = [ int8(0), int8(1), int8(2), int8(2), int8(0), int8(1), int8(-1), int8(-1)];

            bool found = false;
            for (uint8 i = 0; i < 8; i++) {
                int8 nx = int8(x) + dx[i];
                int8 nz = int8(z) + dz[i];

                // Ensure within grid bounds before checking
                if (nx >= 0 && nx < int8(GRID_SIZE) && nz >= 0 && nz < int8(GRID_SIZE)) {
                    if (stacksGrid[sessionId][game].grid[uint8(nx)][uint8(nz)].color != 0) {
                        found = true;
                        break;
                    }
                }
            }
            require(found, "No adjacent stack");
        }

        stacksGrid[sessionId][game].grid[x][z] = stack1;
        stacksGrid[sessionId][game].grid[x + 1][z] = stack2;
        stacksGrid[sessionId][game].grid[x][z + 1] = stack3;
        stacksGrid[sessionId][game].grid[x + 1][z + 1] = stack4;

        // Calculate the correct index in initialStacks based on turn
        // uint8 turnIndex = (gameSessions[sessionId].turn - 1) * 4; // Each turn places 4 blocks

        gameSessions[sessionId].initialStacks[game].push(stack1);
        gameSessions[sessionId].initialStacks[game].push(stack2);
        gameSessions[sessionId].initialStacks[game].push(stack3);
        gameSessions[sessionId].initialStacks[game].push(stack4);

        emit BlockPlaced(sessionId, game, gameSessions[sessionId].turn, 1, x, z, 0, Rotation.X);
    }

    function createSession(address player1, address player2) external {
        // only player 1 can create a session
        require(msg.sender == player2, "Not player 2");
        // player 1 and 2 must not have an active game
        require(userGameSession[player1] == 0, "Player 1 has an active session");
        require(userGameSession[player2] == 0, "Player 2 has an active game");

        uint256 sessionId = gameSessions.length;
        GameSession storage session = gameSessions.push();
        session.player1 = player1;
        session.player2 = player2;
        session.wager = WagerInfo(0, false);
        session.game = 0;
        session.gameStartTime = block.timestamp;
        session.lastMoveTime = block.timestamp;
        session.timeRemainingP1 = timeLimit;
        session.timeRemainingP2 = timeLimit;
        session.gameEnded = false;

        // **Fix:** Initialize `initialStacks` before adding elements
        session.initialStacks.push(); // First game session
        session.initialStacks.push(); // Second game session

        userGameSession[player1] = sessionId;
        userGameSession[player2] = sessionId;
        session.turn = 1;
    }

    function play(uint256 sessionId, uint8 x, uint8 z, Rotation rotation) external {
        GameSession storage session = gameSessions[sessionId];
        // game must not have ended
        require(!session.gameEnded, "GameSession has ended");
        // only player on turn can play
        address starter = session.game == 0 ? session.player1 : session.player2;
        address nonStarter = session.game == 0 ? session.player2 : session.player1;
        address onTurn = session.turn % 2 == 1 ? starter : nonStarter;
        require(msg.sender == onTurn, "Not your turn");
        uint8 currentColor = ((session.turn - 1) % 4) + 1;
        // requirement that the player still has time
        if (onTurn == session.player1) {
            require(block.timestamp - session.lastMoveTime < session.timeRemainingP1, "Player 1 ran out of time");
            session.timeRemainingP1 -= block.timestamp - session.lastMoveTime;
        } else {
            require(block.timestamp - session.lastMoveTime < session.timeRemainingP2, "Player 2 ran out of time");
            session.timeRemainingP2 -= block.timestamp - session.lastMoveTime;
        }

        // we are placing initial stacks
        if(session.turn <= 4) {
            placeInitial4x1Stack(sessionId, session.game, x, z, currentColor);
        } else {
            placeBlock(sessionId, session.game, x, z, currentColor);
            if (rotation == Rotation.X) {
                require(checkStackWithColorExists(sessionId, session.game, currentColor), "No stack with color exists");
                placeBlock(sessionId, session.game, x + 1, z, currentColor);
            } else if (rotation == Rotation.Z) {
                require(checkStackWithColorExists(sessionId, session.game, currentColor), "No stack with color exists");
                placeBlock(sessionId, session.game, x, z + 1, currentColor);
            } else {
                placeBlock(sessionId, session.game, x, z, currentColor);
            }
            // game ends on turn 28
            if (session.turn == 28) {
                if(session.game == 0) {
                    session.game = 1;
                    session.turn = 0;
                } else {
                    session.gameEnded = true;
                }
            }
            emit BlockPlaced(sessionId, session.game, session.turn, 2, x, z, stacksGrid[sessionId][session.game].grid[x][z].y, rotation);
        }
        session.lastMoveTime = block.timestamp;
        session.turn += 1;
    }

    function checkStackWithColorExists(uint256 sessionId, uint8 game, uint8 color) internal view returns (bool) {
        for (uint8 i = 0; i < 16; i++) {
            if (stacksGrid[sessionId][game].grid[gameSessions[sessionId].initialStacks[game][i].x][gameSessions[sessionId].initialStacks[game][i].z].color == color) {
                return true;
            }
        }
        return false;
    }

    function placeBlock(uint256 sessionId, uint8 game, uint8 x, uint8 z, uint8 currentColor) internal {
        require(stacksGrid[sessionId][game].grid[x][z].color != 0, "Stack does not exist");

        stacksGrid[sessionId][game].grid[x][z].y += 1;
        stacksGrid[sessionId][game].grid[x][z].color = currentColor;
    }

    // SCORING
    // • Base Points: 1 point for each cube on top of any stack
    // • Bonus Points: +1 point for cubes on the highest and lowest VISIBLE stacks
    // • GameSession ends when all cubes are placed or when a player runs out of time
    function calculateGamePoints(uint256 sessionId, uint8 game) public view returns (uint256, uint256) {
        uint256 starterPoints = 0;
        uint256 nonStarterPoints = 0;

        uint8 highestStack = 0;
        // first lets loop to find the highest stack
        for (uint8 i = 0; i < 16; i++) {
            uint x = gameSessions[sessionId].initialStacks[game][i].x;
            uint z = gameSessions[sessionId].initialStacks[game][i].z;

            topStack memory stack = stacksGrid[sessionId][game].grid[x][z];
            if (stack.y > highestStack) {
                highestStack = stack.y;
            }
        }

        uint lowestStack = highestStack;
        // now lets loop to find the lowest stack
        for (uint8 i = 0; i < 16; i++) {
            uint x = gameSessions[sessionId].initialStacks[game][i].x;
            uint z = gameSessions[sessionId].initialStacks[game][i].z;

            topStack memory stack = stacksGrid[sessionId][game].grid[x][z];
            if (stack.y < lowestStack) {
                lowestStack = stack.y;
            }
        }

        for (uint8 i = 0; i < 16; i++) {
            uint x = gameSessions[sessionId].initialStacks[game][i].x;
            uint z = gameSessions[sessionId].initialStacks[game][i].z;

            topStack memory stack = stacksGrid[sessionId][game].grid[x][z];
            if (stack.y == highestStack || stack.y == lowestStack) {
                // color 1 and color 3 belong to player 1
                if (stack.color == 1 || stack.color == 3) {
                    starterPoints += 2;
                } else {
                    nonStarterPoints += 2;
                }
            } else {
                if (stack.color == 1 || stack.color == 3) {
                    starterPoints += 1;
                } else {
                    nonStarterPoints += 1;
                }
            }
        }

        return (starterPoints, nonStarterPoints);
    }

    // receive reward
    function acceptRewards(uint256 sessionId) external {
        GameSession storage session = gameSessions[sessionId];
        require(!session.wager.processed, "Wager already processed");
        session.wager.processed = true;
        address winner;
        if(session.game == 1 && session.turn == 29 && session.gameEnded) {
            uint256 totalPlayer1Points = 0;
            uint256 totalPlayer2Points = 0;

            (uint256 starterPoints0, uint256 nonStarterPoints0) = calculateGamePoints(sessionId, 0);
            (uint256 starterPoints1, uint256 nonStarterPoints1) = calculateGamePoints(sessionId, 1);
            totalPlayer1Points += starterPoints0;
            totalPlayer2Points += nonStarterPoints0;
            totalPlayer1Points += nonStarterPoints1;
            totalPlayer2Points += starterPoints1;
            if (totalPlayer1Points > totalPlayer2Points) {
                winner = session.player1;
            } else if (totalPlayer2Points > totalPlayer1Points) {
                winner = session.player2;
            } else {
                // require either player1, player2 
                require(msg.sender == session.player1 || msg.sender == session.player2, "Not a player of this game");
                // Tie case, refund wager to both players
                uint256 feeEach = session.wager.amount * feePercentage / 10000;
                uint256 rewardSplit = session.wager.amount - feeEach;
                (bool success1,) = payable(session.player1).call{value: rewardSplit}("");
                require(success1, "Transfer failed");
                (bool success2,) = payable(session.player2).call{value: rewardSplit}("");
                require(success2, "Transfer failed");
                (bool success3,) = payable(owner).call{value: 2 * feeEach}("");
                require(success3, "Transfer failed");
                return;
            }
        } else {
            // lets throw require current turn is 29
            address starter = session.game == 0 ? session.player1 : session.player2;
            address nonStarter = session.game == 0 ? session.player2 : session.player1;
            address onTurn = session.turn % 2 == 1 ? starter : nonStarter;
            // if not turn 28, game has not ended, we can calculate the winner one player runs out of time
            if (onTurn == session.player1) {
                require(block.timestamp - session.lastMoveTime > session.timeRemainingP1, "Player 1 still has time");
                winner = session.player2;
            } else {
                require(block.timestamp - session.lastMoveTime > session.timeRemainingP2, "Player 2 still has time");
                winner = session.player1;
            }
        }
        // caller has to be the winner
        require(msg.sender == winner, "Not the winner");
        uint256 pot = session.wager.amount * 2;
        uint256 fee = pot * feePercentage / 10000;
        uint256 reward = pot - fee;
        (bool success4,) = payable(winner).call{value: reward}("");
        require(success4, "Transfer failed");
        (bool success5,) = payable(owner).call{value: fee}("");
        require(success5, "Transfer failed");
    }

    function setFeePercentage(uint256 _feePercentage) external onlyOwner {
        require(_feePercentage <= 1000, "Fee too high"); // Max 10%
        feePercentage = _feePercentage;
    }

    function setGameTimeLimit(uint256 _timeLimit) external onlyOwner {
        timeLimit = _timeLimit;
    }

    function withdrawERC20(IERC20 erc20Token) external onlyOwner {
        uint256 erc20Balance = erc20Token.balanceOf(address(this));
        erc20Token.safeTransfer(msg.sender, erc20Balance);
    }

    // if funds are stuck on contract for some reason
    function withdraw(uint256 amount) external onlyOwner {
        (bool success,) = payable(msg.sender).call{value: amount}("");
        require(success, "Transfer failed");
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):