Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Deploy Account | 3896239 | 8 days ago | IN | 0 ETH | 0.00000979 |
Latest 22 internal transactions
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | Contract Creation | 0 ETH | |||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896239 | 8 days ago | 0 ETH | ||||
3896180 | 8 days ago | 0 ETH | ||||
3896180 | 8 days ago | 0 ETH | ||||
3896180 | 8 days ago | 0 ETH | ||||
3896180 | 8 days ago | 0 ETH | ||||
3896180 | 8 days ago | Contract Creation | 0 ETH |
Loading...
Loading
This contract contains unverified libraries: StringUtils
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
AccountFactory
Compiler Version
v0.8.26+commit.8a97fa7a
ZkSolc Version
v1.5.6
Optimization Enabled:
Yes with Mode 3
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.17; import {DEPLOYER_SYSTEM_CONTRACT, IContractDeployer} from '@matterlabs/zksync-contracts/l2/system-contracts/Constants.sol'; import {SystemContractsCaller} from '@matterlabs/zksync-contracts/l2/system-contracts/libraries/SystemContractsCaller.sol'; import {Ownable, Ownable2Step} from '@openzeppelin/contracts/access/Ownable2Step.sol'; import {EfficientCall} from '@matterlabs/zksync-contracts/l2/system-contracts/libraries/EfficientCall.sol'; import {Errors} from './libraries/Errors.sol'; import {IAGWRegistry} from './interfaces/IAGWRegistry.sol'; /** * @title Factory contract to create AGW accounts * @dev Forked from Clave for Abstract * @author https://abs.xyz * @author https://getclave.io */ contract AccountFactory is Ownable2Step { /** * @notice Address of the account implementation */ address public implementationAddress; /** * @notice Allowed selector for account initialization */ bytes4 public initializerSelector; /** * @notice Account registry contract address */ address public registry; /** * @notice Account creation bytecode hash */ bytes32 public proxyBytecodeHash; /** * @notice Authorized deployers of AGW accounts */ mapping (address deployer => bool authorized) public authorizedDeployers; /** * @notice Tracks the initial deployer of each account */ mapping (address account => address deployer) public accountToDeployer; /** * @notice Account address deployed for a given salt the same account * @dev This is used to override the deterministic account address if the account is already deployed * and the initial implementation has been changed */ mapping (bytes32 salt => address accountAddress) public saltToAccount; /** * @notice Event emmited when a new AGW account is created * @param accountAddress Address of the newly created AGW account */ event AGWAccountCreated(address indexed accountAddress); /** * @notice Event emmited when a new AGW account is deployed * @param accountAddress Address of the newly deployed AGW account */ event AGWAccountDeployed(address indexed accountAddress); /** * @notice Event emmited when a deployer account is authorized * @param deployer Address of the deployer account * @param authorized Whether the deployer is authorized to deploy AGW accounts */ event DeployerAuthorized(address indexed deployer, bool indexed authorized); /** * @notice Event emmited when the implementation contract is changed * @param newImplementation Address of the new implementation contract */ event ImplementationChanged(address indexed newImplementation); /** * @notice Event emmited when the registry contract is changed * @param newRegistry Address of the new registry contract */ event RegistryChanged(address indexed newRegistry); /** * @notice Constructor function of the factory contract * @param _implementation address - Address of the implementation contract * @param _registry address - Address of the registry contract * @param _proxyBytecodeHash address - Hash of the bytecode of the AGW proxy contract * @param _deployer address - Address of the account authorized to deploy AGW accounts */ constructor( address _implementation, bytes4 _initializerSelector, address _registry, bytes32 _proxyBytecodeHash, address _deployer, address _owner ) Ownable(_owner) { implementationAddress = _implementation; emit ImplementationChanged(_implementation); initializerSelector = _initializerSelector; registry = _registry; proxyBytecodeHash = _proxyBytecodeHash; authorizedDeployers[_deployer] = true; emit DeployerAuthorized(_deployer, true); } /** * @notice Deploys a new AGW account * @dev Account address depends only on salt * @param salt bytes32 - Salt to be used for the account creation * @param initializer bytes memory - Initializer data for the account * @return accountAddress address - Address of the newly created AGW account */ function deployAccount( bytes32 salt, bytes calldata initializer ) external payable returns (address accountAddress) { if (saltToAccount[salt] != address(0)) { revert Errors.ALREADY_CREATED(); } // Check that the initializer is not empty if (initializer.length < 4) { revert Errors.INVALID_INITIALIZER(); } // Check that the initializer selector is correct { bytes4 selector = bytes4(initializer[0:4]); if (selector != initializerSelector) { revert Errors.INVALID_INITIALIZER(); } } // Deploy the implementation contract (bool success, bytes memory returnData) = SystemContractsCaller.systemCallWithReturndata( uint32(gasleft()), address(DEPLOYER_SYSTEM_CONTRACT), uint128(0), abi.encodeCall( DEPLOYER_SYSTEM_CONTRACT.create2Account, ( salt, proxyBytecodeHash, abi.encode(implementationAddress), IContractDeployer.AccountAbstractionVersion.Version1 ) ) ); if (!success) { revert Errors.DEPLOYMENT_FAILED(); } // Decode the account address (accountAddress) = abi.decode(returnData, (address)); // Store the deployer of the account accountToDeployer[accountAddress] = msg.sender; saltToAccount[salt] = accountAddress; // This propagates the revert if the initialization fails EfficientCall.call(gasleft(), accountAddress, msg.value, initializer, false); IAGWRegistry(registry).register(accountAddress); emit AGWAccountDeployed(accountAddress); } /** * @notice To emit an event when a AGW account is created but not yet deployed * @dev This event is so that we can index accounts that are created but not yet deployed * @param accountAddress address - Address of the AGW account that was created */ function agwAccountCreated(address accountAddress) external { if (!authorizedDeployers[msg.sender]) { revert Errors.NOT_FROM_DEPLOYER(); } emit AGWAccountCreated(accountAddress); } /** * @notice Sets authorization to deploy AGW accounts * @param deployer address - Address of the new account authorized to deploy AGW accounts * @param authorized bool - Whether the new deployer is authorized to deploy AGW accounts */ function setDeployer(address deployer, bool authorized) external onlyOwner { authorizedDeployers[deployer] = authorized; emit DeployerAuthorized(deployer, authorized); } /** * @notice Changes the implementation contract address * @param newImplementation address - Address of the new implementation contract */ function changeImplementation(address newImplementation, bytes4 newInitializerSelector) external onlyOwner { implementationAddress = newImplementation; initializerSelector = newInitializerSelector; emit ImplementationChanged(newImplementation); } /** * @notice Changes the registry contract address * @param newRegistry address - Address of the new registry contract */ function changeRegistry(address newRegistry) external onlyOwner { registry = newRegistry; emit RegistryChanged(newRegistry); } /** * @notice Returns the address of the AGW account that would be created with the given salt * @dev If the account already exists, it returns the existing account address * @param salt bytes32 - Salt to be used for the account creation * @return accountAddress address - Address of the AGW account that would be created with the given salt */ function getAddressForSalt(bytes32 salt) external view returns (address accountAddress) { // Check if the account is already deployed accountAddress = saltToAccount[salt]; if (accountAddress == address(0)) { // If not, get the deterministic account address for the current implementation accountAddress = IContractDeployer(DEPLOYER_SYSTEM_CONTRACT).getNewAddressCreate2( address(this), proxyBytecodeHash, salt, abi.encode(implementationAddress) ); } } /** * @notice Returns the address of the AGW account that would be created with the given salt and implementation * @param salt bytes32 - Salt to be used for the account creation * @param _implementation address - Address of the implementation contract * @return accountAddress address - Address of the AGW account that would be created with the given salt and implementation */ function getAddressForSaltAndImplementation( bytes32 salt, address _implementation ) external view returns (address accountAddress) { accountAddress = IContractDeployer(DEPLOYER_SYSTEM_CONTRACT).getNewAddressCreate2( address(this), proxyBytecodeHash, salt, abi.encode(_implementation) ); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.17; interface IAGWRegistry { function register(address account) external; function isAGW(address account) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.17; library Errors { /*////////////////////////////////////////////////////////////// AGW //////////////////////////////////////////////////////////////*/ error INSUFFICIENT_FUNDS(); // 0xe7931438 error FEE_PAYMENT_FAILED(); // 0x3d40a3a3 error UNAUTHORIZED_OUTSIDE_TRANSACTION(); // 0xfc82da4e error VALIDATION_HOOK_FAILED(); // 0x52c9d27a /*////////////////////////////////////////////////////////////// LINKED LIST //////////////////////////////////////////////////////////////*/ error INVALID_PREV(); // 0x5a4c0eb3 // Bytes error INVALID_BYTES(); // 0xb6dfaaff error BYTES_ALREADY_EXISTS(); // 0xdf6cac6b error BYTES_NOT_EXISTS(); // 0x689908a6 // Address error INVALID_ADDRESS(); // 0x5963709b error ADDRESS_ALREADY_EXISTS(); // 0xf2d4d191 error ADDRESS_NOT_EXISTS(); // 0xad6ab975 /*////////////////////////////////////////////////////////////// OWNER MANAGER //////////////////////////////////////////////////////////////*/ error EMPTY_OWNERS(); // 0xc957eb7e error INVALID_PUBKEY_LENGTH(); // 0x04c4d8f7 /*////////////////////////////////////////////////////////////// VALIDATOR MANAGER //////////////////////////////////////////////////////////////*/ error EMPTY_VALIDATORS(); // 0xd7c64d89 error VALIDATOR_ERC165_FAIL(); // 0x5d5273ad /*////////////////////////////////////////////////////////////// UPGRADE MANAGER //////////////////////////////////////////////////////////////*/ error SAME_IMPLEMENTATION(); // 0x5e741005 /*////////////////////////////////////////////////////////////// HOOK MANAGER //////////////////////////////////////////////////////////////*/ error EMPTY_HOOK_ADDRESS(); // 0x413348ae error HOOK_ERC165_FAIL(); // 0x9f93f87d error INVALID_KEY(); // 0xce7045bd /*////////////////////////////////////////////////////////////// MODULE MANAGER //////////////////////////////////////////////////////////////*/ error EMPTY_MODULE_ADDRESS(); // 0x912fe2f2 error RECUSIVE_MODULE_CALL(); // 0x2cf7b9c8 error MODULE_ERC165_FAIL(); // 0xc1ad2a50 /*////////////////////////////////////////////////////////////// AUTH //////////////////////////////////////////////////////////////*/ error NOT_FROM_BOOTLOADER(); // 0x93887e3b error NOT_FROM_MODULE(); // 0x574a805d error NOT_FROM_HOOK(); // 0xd675a4f1 error NOT_FROM_SELF(); // 0xa70c28d1 error NOT_FROM_SELF_OR_MODULE(); // 0x22a1259f /*////////////////////////////////////////////////////////////// R1 VALIDATOR //////////////////////////////////////////////////////////////*/ error INVALID_SIGNATURE(); // 0xa3402a38 /*////////////////////////////////////////////////////////////// SOCIAL RECOVERY //////////////////////////////////////////////////////////////*/ error INVALID_RECOVERY_CONFIG(); // 0xf774f439 error INVALID_RECOVERY_NONCE(); // 0x098c9f8e error INVALID_GUARDIAN(); // 0x11a2a82b error INVALID_GUARDIAN_SIGNATURE(); // 0xcc117c1c error ZERO_ADDRESS_GUARDIAN(); // 0x6de9b401 error GUARDIANS_MUST_BE_SORTED(); // 0xc52b41f7 error RECOVERY_TIMELOCK(); // 0x1506ac5a error RECOVERY_NOT_STARTED(); // 0xa6a4a3aa error RECOVERY_NOT_INITED(); // 0xd0f6fdbf error RECOVERY_IN_PROGRESS(); // 0x8daa42a9 error INSUFFICIENT_GUARDIANS(); // 0x7629075d error ALREADY_INITED(); // 0xdb0c77c8 /*////////////////////////////////////////////////////////////// FACTORY //////////////////////////////////////////////////////////////*/ error DEPLOYMENT_FAILED(); // 0x0f02d218 error INITIALIZATION_FAILED(); // 0x5b101091 error INVALID_INITIALIZER(); // 0x350366d7 error INVALID_SALT(); // 0x8b3152e6 error ALREADY_CREATED(); // 0x26ebf2e8 /*////////////////////////////////////////////////////////////// PAYMASTER //////////////////////////////////////////////////////////////*/ error UNSUPPORTED_FLOW(); // 0xd721e389 error UNAUTHORIZED_WITHDRAW(); // 0x7809a0b4 error INVALID_TOKEN(); // 0xd0995cf2 error SHORT_PAYMASTER_INPUT(); // 0x48d170f6 error UNSUPPORTED_TOKEN(); // 0xce706f70 error LESS_ALLOWANCE_FOR_PAYMASTER(); // 0x11f7d13f error FAILED_FEE_TRANSFER(); // 0xf316e09d error INVALID_MARKUP(); // 0x4af7ffe3 error USER_LIMIT_REACHED(); // 0x07235346 error INVALID_USER_LIMIT(); // 0x2640fa41 error NOT_AGW_ACCOUNT(); // 0x1ae1d6fd error EXCEEDS_MAX_SPONSORED_ETH(); // 0x3f379f40 /*////////////////////////////////////////////////////////////// REGISTRY //////////////////////////////////////////////////////////////*/ error NOT_FROM_FACTORY(); // 0x238438ed error NOT_FROM_DEPLOYER(); // 0x83f090e3 /*////////////////////////////////////////////////////////////// BatchCaller //////////////////////////////////////////////////////////////*/ error ONLY_DELEGATECALL(); // 0x43d22ee9 error CALL_FAILED(); // 0x84aed38d /*////////////////////////////////////////////////////////////// INITABLE //////////////////////////////////////////////////////////////*/ error MODULE_NOT_ADDED_CORRECTLY(); // 0xb66e8ec4 error MODULE_NOT_REMOVED_CORRECTLY(); // 0x680c8744 error MsgValueMismatch(uint256 actualValue, uint256 expectedValue); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol) pragma solidity ^0.8.20; import {Ownable} from "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * This extension of the {Ownable} contract includes a two-step mechanism to transfer * ownership, where the new owner must call {acceptOwnership} in order to replace the * old one. This can help prevent common mistakes, such as transfers of ownership to * incorrect accounts, or to contracts that are unable to interact with the * permission system. * * The initial owner is specified at deployment time in the constructor for `Ownable`. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. * * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); if (pendingOwner() != sender) { revert OwnableUnauthorizedAccount(sender); } _transferOwnership(sender); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./interfaces/IAccountCodeStorage.sol"; import "./interfaces/INonceHolder.sol"; import "./interfaces/IContractDeployer.sol"; import "./interfaces/IKnownCodesStorage.sol"; import "./interfaces/IImmutableSimulator.sol"; import "./interfaces/IEthToken.sol"; import "./interfaces/IL1Messenger.sol"; import "./interfaces/ISystemContext.sol"; import "./interfaces/IBytecodeCompressor.sol"; import "./BootloaderUtilities.sol"; /// @dev All the system contracts introduced by zkSync have their addresses /// started from 2^15 in order to avoid collision with Ethereum precompiles. uint160 constant SYSTEM_CONTRACTS_OFFSET = 0x8000; // 2^15 /// @dev All the system contracts must be located in the kernel space, /// i.e. their addresses must be below 2^16. uint160 constant MAX_SYSTEM_CONTRACT_ADDRESS = 0xffff; // 2^16 - 1 address constant ECRECOVER_SYSTEM_CONTRACT = address(0x01); address constant SHA256_SYSTEM_CONTRACT = address(0x02); /// @dev The current maximum deployed precompile address. /// Note: currently only two precompiles are deployed: /// 0x01 - ecrecover /// 0x02 - sha256 /// Important! So the constant should be updated if more precompiles are deployed. uint256 constant CURRENT_MAX_PRECOMPILE_ADDRESS = uint256(uint160(SHA256_SYSTEM_CONTRACT)); address payable constant BOOTLOADER_FORMAL_ADDRESS = payable(address(SYSTEM_CONTRACTS_OFFSET + 0x01)); IAccountCodeStorage constant ACCOUNT_CODE_STORAGE_SYSTEM_CONTRACT = IAccountCodeStorage( address(SYSTEM_CONTRACTS_OFFSET + 0x02) ); INonceHolder constant NONCE_HOLDER_SYSTEM_CONTRACT = INonceHolder(address(SYSTEM_CONTRACTS_OFFSET + 0x03)); IKnownCodesStorage constant KNOWN_CODE_STORAGE_CONTRACT = IKnownCodesStorage(address(SYSTEM_CONTRACTS_OFFSET + 0x04)); IImmutableSimulator constant IMMUTABLE_SIMULATOR_SYSTEM_CONTRACT = IImmutableSimulator( address(SYSTEM_CONTRACTS_OFFSET + 0x05) ); IContractDeployer constant DEPLOYER_SYSTEM_CONTRACT = IContractDeployer(address(SYSTEM_CONTRACTS_OFFSET + 0x06)); // A contract that is allowed to deploy any codehash // on any address. To be used only during an upgrade. address constant FORCE_DEPLOYER = address(SYSTEM_CONTRACTS_OFFSET + 0x07); IL1Messenger constant L1_MESSENGER_CONTRACT = IL1Messenger(address(SYSTEM_CONTRACTS_OFFSET + 0x08)); address constant MSG_VALUE_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x09); IEthToken constant ETH_TOKEN_SYSTEM_CONTRACT = IEthToken(address(SYSTEM_CONTRACTS_OFFSET + 0x0a)); address constant KECCAK256_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x10); ISystemContext constant SYSTEM_CONTEXT_CONTRACT = ISystemContext(payable(address(SYSTEM_CONTRACTS_OFFSET + 0x0b))); BootloaderUtilities constant BOOTLOADER_UTILITIES = BootloaderUtilities(address(SYSTEM_CONTRACTS_OFFSET + 0x0c)); address constant EVENT_WRITER_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x0d); IBytecodeCompressor constant BYTECODE_COMPRESSOR_CONTRACT = IBytecodeCompressor( address(SYSTEM_CONTRACTS_OFFSET + 0x0e) ); /// @dev If the bitwise AND of the extraAbi[2] param when calling the MSG_VALUE_SIMULATOR /// is non-zero, the call will be assumed to be a system one. uint256 constant MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT = 1; /// @dev The maximal msg.value that context can have uint256 constant MAX_MSG_VALUE = 2 ** 128 - 1; /// @dev Prefix used during derivation of account addresses using CREATE2 /// @dev keccak256("zksyncCreate2") bytes32 constant CREATE2_PREFIX = 0x2020dba91b30cc0006188af794c2fb30dd8520db7e2c088b7fc7c103c00ca494; /// @dev Prefix used during derivation of account addresses using CREATE /// @dev keccak256("zksyncCreate") bytes32 constant CREATE_PREFIX = 0x63bae3a9951d38e8a3fbb7b70909afc1200610fc5bc55ade242f815974674f23;
// SPDX-License-Identifier: MIT pragma solidity ^0.8; import {MSG_VALUE_SYSTEM_CONTRACT, MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT} from "../Constants.sol"; import "./Utils.sol"; // Addresses used for the compiler to be replaced with the // zkSync-specific opcodes during the compilation. // IMPORTANT: these are just compile-time constants and are used // only if used in-place by Yul optimizer. address constant TO_L1_CALL_ADDRESS = address((1 << 16) - 1); address constant CODE_ADDRESS_CALL_ADDRESS = address((1 << 16) - 2); address constant PRECOMPILE_CALL_ADDRESS = address((1 << 16) - 3); address constant META_CALL_ADDRESS = address((1 << 16) - 4); address constant MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 5); address constant SYSTEM_MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 6); address constant MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 7); address constant SYSTEM_MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 8); address constant RAW_FAR_CALL_CALL_ADDRESS = address((1 << 16) - 9); address constant RAW_FAR_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 10); address constant SYSTEM_CALL_CALL_ADDRESS = address((1 << 16) - 11); address constant SYSTEM_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 12); address constant SET_CONTEXT_VALUE_CALL_ADDRESS = address((1 << 16) - 13); address constant SET_PUBDATA_PRICE_CALL_ADDRESS = address((1 << 16) - 14); address constant INCREMENT_TX_COUNTER_CALL_ADDRESS = address((1 << 16) - 15); address constant PTR_CALLDATA_CALL_ADDRESS = address((1 << 16) - 16); address constant CALLFLAGS_CALL_ADDRESS = address((1 << 16) - 17); address constant PTR_RETURNDATA_CALL_ADDRESS = address((1 << 16) - 18); address constant EVENT_INITIALIZE_ADDRESS = address((1 << 16) - 19); address constant EVENT_WRITE_ADDRESS = address((1 << 16) - 20); address constant LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 21); address constant LOAD_LATEST_RETURNDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 22); address constant PTR_ADD_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 23); address constant PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 24); address constant PTR_PACK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 25); address constant MULTIPLICATION_HIGH_ADDRESS = address((1 << 16) - 26); address constant GET_EXTRA_ABI_DATA_ADDRESS = address((1 << 16) - 27); // All the offsets are in bits uint256 constant META_GAS_PER_PUBDATA_BYTE_OFFSET = 0 * 8; uint256 constant META_HEAP_SIZE_OFFSET = 8 * 8; uint256 constant META_AUX_HEAP_SIZE_OFFSET = 12 * 8; uint256 constant META_SHARD_ID_OFFSET = 28 * 8; uint256 constant META_CALLER_SHARD_ID_OFFSET = 29 * 8; uint256 constant META_CODE_SHARD_ID_OFFSET = 30 * 8; /// @notice The way to forward the calldata: /// - Use the current heap (i.e. the same as on EVM). /// - Use the auxiliary heap. /// - Forward via a pointer /// @dev Note, that currently, users do not have access to the auxiliary /// heap and so the only type of forwarding that will be used by the users /// are UseHeap and ForwardFatPointer for forwarding a slice of the current calldata /// to the next call. enum CalldataForwardingMode { UseHeap, ForwardFatPointer, UseAuxHeap } /** * @author Matter Labs * @notice A library that allows calling contracts with the `isSystem` flag. * @dev It is needed to call ContractDeployer and NonceHolder. */ library SystemContractsCaller { /// @notice Makes a call with the `isSystem` flag. /// @param gasLimit The gas limit for the call. /// @param to The address to call. /// @param value The value to pass with the transaction. /// @param data The calldata. /// @return success Whether the transaction has been successful. /// @dev Note, that the `isSystem` flag can only be set when calling system contracts. function systemCall(uint32 gasLimit, address to, uint256 value, bytes memory data) internal returns (bool success) { address callAddr = SYSTEM_CALL_CALL_ADDRESS; uint32 dataStart; assembly { dataStart := add(data, 0x20) } uint32 dataLength = uint32(Utils.safeCastToU32(data.length)); uint256 farCallAbi = SystemContractsCaller.getFarCallABI( 0, 0, dataStart, dataLength, gasLimit, // Only rollup is supported for now 0, CalldataForwardingMode.UseHeap, false, true ); if (value == 0) { // Doing the system call directly assembly { success := call(to, callAddr, 0, 0, farCallAbi, 0, 0) } } else { address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT; // We need to supply the mask to the MsgValueSimulator to denote // that the call should be a system one. uint256 forwardMask = MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT; assembly { success := call(msgValueSimulator, callAddr, value, to, farCallAbi, forwardMask, 0) } } } /// @notice Makes a call with the `isSystem` flag. /// @param gasLimit The gas limit for the call. /// @param to The address to call. /// @param value The value to pass with the transaction. /// @param data The calldata. /// @return success Whether the transaction has been successful. /// @return returnData The returndata of the transaction (revert reason in case the transaction has failed). /// @dev Note, that the `isSystem` flag can only be set when calling system contracts. function systemCallWithReturndata( uint32 gasLimit, address to, uint128 value, bytes memory data ) internal returns (bool success, bytes memory returnData) { success = systemCall(gasLimit, to, value, data); uint256 size; assembly { size := returndatasize() } returnData = new bytes(size); assembly { returndatacopy(add(returnData, 0x20), 0, size) } } /// @notice Makes a call with the `isSystem` flag. /// @param gasLimit The gas limit for the call. /// @param to The address to call. /// @param value The value to pass with the transaction. /// @param data The calldata. /// @return returnData The returndata of the transaction. In case the transaction reverts, the error /// bubbles up to the parent frame. /// @dev Note, that the `isSystem` flag can only be set when calling system contracts. function systemCallWithPropagatedRevert( uint32 gasLimit, address to, uint128 value, bytes memory data ) internal returns (bytes memory returnData) { bool success; (success, returnData) = systemCallWithReturndata(gasLimit, to, value, data); if (!success) { assembly { let size := mload(returnData) revert(add(returnData, 0x20), size) } } } /// @notice Calculates the packed representation of the FarCallABI. /// @param dataOffset Calldata offset in memory. Provide 0 unless using custom pointer. /// @param memoryPage Memory page to use. Provide 0 unless using custom pointer. /// @param dataStart The start of the calldata slice. Provide the offset in memory /// if not using custom pointer. /// @param dataLength The calldata length. Provide the length of the calldata in bytes /// unless using custom pointer. /// @param gasPassed The gas to pass with the call. /// @param shardId Of the account to call. Currently only 0 is supported. /// @param forwardingMode The forwarding mode to use: /// - provide CalldataForwardingMode.UseHeap when using your current memory /// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer. /// @param isConstructorCall Whether the call will be a call to the constructor /// (ignored when the caller is not a system contract). /// @param isSystemCall Whether the call will have the `isSystem` flag. /// @return farCallAbi The far call ABI. /// @dev The `FarCallABI` has the following structure: /// pub struct FarCallABI { /// pub memory_quasi_fat_pointer: FatPointer, /// pub gas_passed: u32, /// pub shard_id: u8, /// pub forwarding_mode: FarCallForwardPageType, /// pub constructor_call: bool, /// pub to_system: bool, /// } /// /// The FatPointer struct: /// /// pub struct FatPointer { /// pub offset: u32, // offset relative to `start` /// pub memory_page: u32, // memory page where slice is located /// pub start: u32, // absolute start of the slice /// pub length: u32, // length of the slice /// } /// /// @dev Note, that the actual layout is the following: /// /// [0..32) bits -- the calldata offset /// [32..64) bits -- the memory page to use. Can be left blank in most of the cases. /// [64..96) bits -- the absolute start of the slice /// [96..128) bits -- the length of the slice. /// [128..192) bits -- empty bits. /// [192..224) bits -- gasPassed. /// [224..232) bits -- forwarding_mode /// [232..240) bits -- shard id. /// [240..248) bits -- constructor call flag /// [248..256] bits -- system call flag function getFarCallABI( uint32 dataOffset, uint32 memoryPage, uint32 dataStart, uint32 dataLength, uint32 gasPassed, uint8 shardId, CalldataForwardingMode forwardingMode, bool isConstructorCall, bool isSystemCall ) internal pure returns (uint256 farCallAbi) { // Fill in the call parameter fields farCallAbi = getFarCallABIWithEmptyFatPointer( gasPassed, shardId, forwardingMode, isConstructorCall, isSystemCall ); // Fill in the fat pointer fields farCallAbi |= dataOffset; farCallAbi |= (uint256(memoryPage) << 32); farCallAbi |= (uint256(dataStart) << 64); farCallAbi |= (uint256(dataLength) << 96); } /// @notice Calculates the packed representation of the FarCallABI with zero fat pointer fields. /// @param gasPassed The gas to pass with the call. /// @param shardId Of the account to call. Currently only 0 is supported. /// @param forwardingMode The forwarding mode to use: /// - provide CalldataForwardingMode.UseHeap when using your current memory /// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer. /// @param isConstructorCall Whether the call will be a call to the constructor /// (ignored when the caller is not a system contract). /// @param isSystemCall Whether the call will have the `isSystem` flag. /// @return farCallAbiWithEmptyFatPtr The far call ABI with zero fat pointer fields. function getFarCallABIWithEmptyFatPointer( uint32 gasPassed, uint8 shardId, CalldataForwardingMode forwardingMode, bool isConstructorCall, bool isSystemCall ) internal pure returns (uint256 farCallAbiWithEmptyFatPtr) { farCallAbiWithEmptyFatPtr |= (uint256(gasPassed) << 192); farCallAbiWithEmptyFatPtr |= (uint256(forwardingMode) << 224); farCallAbiWithEmptyFatPtr |= (uint256(shardId) << 232); if (isConstructorCall) { farCallAbiWithEmptyFatPtr |= (1 << 240); } if (isSystemCall) { farCallAbiWithEmptyFatPtr |= (1 << 248); } } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity ^0.8.0; import "./SystemContractHelper.sol"; import "./Utils.sol"; import {SHA256_SYSTEM_CONTRACT, KECCAK256_SYSTEM_CONTRACT} from "../Constants.sol"; /** * @author Matter Labs * @notice This library is used to perform ultra-efficient calls using zkEVM-specific features. * @dev EVM calls always accept a memory slice as input and return a memory slice as output. * Therefore, even if the user has a ready-made calldata slice, they still need to copy it to memory * before calling. This is especially inefficient for large inputs (proxies, multi-calls, etc.). * In turn, zkEVM operates over a fat pointer, which is a set of (memory page, offset, start, length) in the memory/calldata/returndata. * This allows forwarding the calldata slice as is, without copying it to memory. * @dev Fat pointer is not just an integer, it is an extended data type supported on the VM level. * zkEVM creates the wellformed fat pointers for all the calldata/returndata regions, later * the contract may manipulate the already created fat pointers to forward a slice of the data, but not * to create new fat pointers! * @dev The allowed operation on fat pointers are: * 1. `ptr.add` - Transforms `ptr.offset` into `ptr.offset + u32(_value)`. If overflow happens then it panics. * 2. `ptr.sub` - Transforms `ptr.offset` into `ptr.offset - u32(_value)`. If underflow happens then it panics. * 3. `ptr.pack` - Do the concatenation between the lowest 128 bits of the pointer itself and the highest 128 bits of `_value`. It is typically used to prepare the ABI for external calls. * 4. `ptr.shrink` - Transforms `ptr.length` into `ptr.length - u32(_shrink)`. If underflow happens then it panics. * @dev The call opcodes accept the fat pointer and change it to its canonical form before passing it to the child call * 1. `ptr.start` is transformed into `ptr.offset + ptr.start` * 2. `ptr.length` is transformed into `ptr.length - ptr.offset` * 3. `ptr.offset` is transformed into `0` */ library EfficientCall { /// @notice Call the `keccak256` without copying calldata to memory. /// @param _data The preimage data. /// @return The `keccak256` hash. function keccak(bytes calldata _data) internal view returns (bytes32) { bytes memory returnData = staticCall(gasleft(), KECCAK256_SYSTEM_CONTRACT, _data); require(returnData.length == 32, "keccak256 returned invalid data"); return bytes32(returnData); } /// @notice Call the `sha256` precompile without copying calldata to memory. /// @param _data The preimage data. /// @return The `sha256` hash. function sha(bytes calldata _data) internal view returns (bytes32) { bytes memory returnData = staticCall(gasleft(), SHA256_SYSTEM_CONTRACT, _data); require(returnData.length == 32, "sha returned invalid data"); return bytes32(returnData); } /// @notice Perform a `call` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _value The `msg.value` to send. /// @param _data The calldata to use for the call. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return returnData The copied to memory return data. function call( uint256 _gas, address _address, uint256 _value, bytes calldata _data, bool _isSystem ) internal returns (bytes memory returnData) { bool success = rawCall(_gas, _address, _value, _data, _isSystem); returnData = _verifyCallResult(success); } /// @notice Perform a `staticCall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return returnData The copied to memory return data. function staticCall( uint256 _gas, address _address, bytes calldata _data ) internal view returns (bytes memory returnData) { bool success = rawStaticCall(_gas, _address, _data); returnData = _verifyCallResult(success); } /// @notice Perform a `delegateCall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return returnData The copied to memory return data. function delegateCall( uint256 _gas, address _address, bytes calldata _data ) internal returns (bytes memory returnData) { bool success = rawDelegateCall(_gas, _address, _data); returnData = _verifyCallResult(success); } /// @notice Perform a `mimicCall` (a call with custom msg.sender) without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @param _whoToMimic The `msg.sender` for the next call. /// @param _isConstructor Whether the call should contain the `isConstructor` flag. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return returnData The copied to memory return data. function mimicCall( uint256 _gas, address _address, bytes calldata _data, address _whoToMimic, bool _isConstructor, bool _isSystem ) internal returns (bytes memory returnData) { bool success = rawMimicCall(_gas, _address, _data, _whoToMimic, _isConstructor, _isSystem); returnData = _verifyCallResult(success); } /// @notice Perform a `call` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _value The `msg.value` to send. /// @param _data The calldata to use for the call. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return success whether the call was successful. function rawCall( uint256 _gas, address _address, uint256 _value, bytes calldata _data, bool _isSystem ) internal returns (bool success) { if (_value == 0) { _loadFarCallABIIntoActivePtr(_gas, _data, false, _isSystem); address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS; assembly { success := call(_address, callAddr, 0, 0, 0xFFFF, 0, 0) } } else { _loadFarCallABIIntoActivePtr(_gas, _data, false, true); // If there is provided `msg.value` call the `MsgValueSimulator` to forward ether. address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT; address callAddr = SYSTEM_CALL_BY_REF_CALL_ADDRESS; // We need to supply the mask to the MsgValueSimulator to denote // that the call should be a system one. uint256 forwardMask = _isSystem ? MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT : 0; assembly { success := call(msgValueSimulator, callAddr, _value, _address, 0xFFFF, forwardMask, 0) } } } /// @notice Perform a `staticCall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return success whether the call was successful. function rawStaticCall(uint256 _gas, address _address, bytes calldata _data) internal view returns (bool success) { _loadFarCallABIIntoActivePtr(_gas, _data, false, false); address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS; assembly { success := staticcall(_address, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Perform a `delegatecall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return success whether the call was successful. function rawDelegateCall(uint256 _gas, address _address, bytes calldata _data) internal returns (bool success) { _loadFarCallABIIntoActivePtr(_gas, _data, false, false); address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS; assembly { success := delegatecall(_address, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Perform a `mimicCall` (call with custom msg.sender) without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @param _whoToMimic The `msg.sender` for the next call. /// @param _isConstructor Whether the call should contain the `isConstructor` flag. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return success whether the call was successful. /// @dev If called not in kernel mode, it will result in a revert (enforced by the VM) function rawMimicCall( uint256 _gas, address _address, bytes calldata _data, address _whoToMimic, bool _isConstructor, bool _isSystem ) internal returns (bool success) { _loadFarCallABIIntoActivePtr(_gas, _data, _isConstructor, _isSystem); address callAddr = MIMIC_CALL_BY_REF_CALL_ADDRESS; uint256 cleanupMask = ADDRESS_MASK; assembly { // Clearing values before usage in assembly, since Solidity // doesn't do it by default _whoToMimic := and(_whoToMimic, cleanupMask) success := call(_address, callAddr, 0, 0, _whoToMimic, 0, 0) } } /// @dev Verify that a low-level call was successful, and revert if it wasn't, by bubbling the revert reason. /// @param _success Whether the call was successful. /// @return returnData The copied to memory return data. function _verifyCallResult(bool _success) private pure returns (bytes memory returnData) { if (_success) { uint256 size; assembly { size := returndatasize() } returnData = new bytes(size); assembly { returndatacopy(add(returnData, 0x20), 0, size) } } else { propagateRevert(); } } /// @dev Propagate the revert reason from the current call to the caller. function propagateRevert() internal pure { assembly { let size := returndatasize() returndatacopy(0, 0, size) revert(0, size) } } /// @dev Load the far call ABI into active ptr, that will be used for the next call by reference. /// @param _gas The gas to be passed to the call. /// @param _data The calldata to be passed to the call. /// @param _isConstructor Whether the call is a constructor call. /// @param _isSystem Whether the call is a system call. function _loadFarCallABIIntoActivePtr( uint256 _gas, bytes calldata _data, bool _isConstructor, bool _isSystem ) private view { SystemContractHelper.loadCalldataIntoActivePtr(); // Currently, zkEVM considers the pointer valid if(ptr.offset < ptr.length || (ptr.length == 0 && ptr.offset == 0)), otherwise panics. // So, if the data is empty we need to make the `ptr.length = ptr.offset = 0`, otherwise follow standard logic. if (_data.length == 0) { // Safe to cast, offset is never bigger than `type(uint32).max` SystemContractHelper.ptrShrinkIntoActive(uint32(msg.data.length)); } else { uint256 dataOffset; assembly { dataOffset := _data.offset } // Safe to cast, offset is never bigger than `type(uint32).max` SystemContractHelper.ptrAddIntoActive(uint32(dataOffset)); // Safe to cast, `data.length` is never bigger than `type(uint32).max` uint32 shrinkTo = uint32(msg.data.length - (_data.length + dataOffset)); SystemContractHelper.ptrShrinkIntoActive(shrinkTo); } uint32 gas = Utils.safeCastToU32(_gas); uint256 farCallAbi = SystemContractsCaller.getFarCallABIWithEmptyFatPointer( gas, // Only rollup is supported for now 0, CalldataForwardingMode.ForwardFatPointer, _isConstructor, _isSystem ); SystemContractHelper.ptrPackIntoActivePtr(farCallAbi); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IAccountCodeStorage { function storeAccountConstructingCodeHash(address _address, bytes32 _hash) external; function storeAccountConstructedCodeHash(address _address, bytes32 _hash) external; function markAccountCodeHashAsConstructed(address _address) external; function getRawCodeHash(address _address) external view returns (bytes32 codeHash); function getCodeHash(uint256 _input) external view returns (bytes32 codeHash); function getCodeSize(uint256 _input) external view returns (uint256 codeSize); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IContractDeployer { /// @notice Defines the version of the account abstraction protocol /// that a contract claims to follow. /// - `None` means that the account is just a contract and it should never be interacted /// with as a custom account /// - `Version1` means that the account follows the first version of the account abstraction protocol enum AccountAbstractionVersion { None, Version1 } /// @notice Defines the nonce ordering used by the account /// - `Sequential` means that it is expected that the nonces are monotonic and increment by 1 /// at a time (the same as EOAs). /// - `Arbitrary` means that the nonces for the accounts can be arbitrary. The operator /// should serve the transactions from such an account on a first-come-first-serve basis. /// @dev This ordering is more of a suggestion to the operator on how the AA expects its transactions /// to be processed and is not considered as a system invariant. enum AccountNonceOrdering { Sequential, Arbitrary } struct AccountInfo { AccountAbstractionVersion supportedAAVersion; AccountNonceOrdering nonceOrdering; } event ContractDeployed( address indexed deployerAddress, bytes32 indexed bytecodeHash, address indexed contractAddress ); event AccountNonceOrderingUpdated(address indexed accountAddress, AccountNonceOrdering nonceOrdering); event AccountVersionUpdated(address indexed accountAddress, AccountAbstractionVersion aaVersion); function getNewAddressCreate2( address _sender, bytes32 _bytecodeHash, bytes32 _salt, bytes calldata _input ) external view returns (address newAddress); function getNewAddressCreate(address _sender, uint256 _senderNonce) external pure returns (address newAddress); function create2( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input ) external payable returns (address newAddress); function create2Account( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input, AccountAbstractionVersion _aaVersion ) external payable returns (address newAddress); /// @dev While the `_salt` parameter is not used anywhere here, /// it is still needed for consistency between `create` and /// `create2` functions (required by the compiler). function create( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input ) external payable returns (address newAddress); /// @dev While `_salt` is never used here, we leave it here as a parameter /// for the consistency with the `create` function. function createAccount( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input, AccountAbstractionVersion _aaVersion ) external payable returns (address newAddress); /// @notice Returns the information about a certain AA. function getAccountInfo(address _address) external view returns (AccountInfo memory info); /// @notice Can be called by an account to update its account version function updateAccountVersion(AccountAbstractionVersion _version) external; /// @notice Can be called by an account to update its nonce ordering function updateNonceOrdering(AccountNonceOrdering _nonceOrdering) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @author Matter Labs * @dev Interface of the nonce holder contract -- a contract used by the system to ensure * that there is always a unique identifier for a transaction with a particular account (we call it nonce). * In other words, the pair of (address, nonce) should always be unique. * @dev Custom accounts should use methods of this contract to store nonces or other possible unique identifiers * for the transaction. */ interface INonceHolder { event ValueSetUnderNonce(address indexed accountAddress, uint256 indexed key, uint256 value); /// @dev Returns the current minimal nonce for account. function getMinNonce(address _address) external view returns (uint256); /// @dev Returns the raw version of the current minimal nonce /// (equal to minNonce + 2^128 * deployment nonce). function getRawNonce(address _address) external view returns (uint256); /// @dev Increases the minimal nonce for the msg.sender. function increaseMinNonce(uint256 _value) external returns (uint256); /// @dev Sets the nonce value `key` as used. function setValueUnderNonce(uint256 _key, uint256 _value) external; /// @dev Gets the value stored inside a custom nonce. function getValueUnderNonce(uint256 _key) external view returns (uint256); /// @dev A convenience method to increment the minimal nonce if it is equal /// to the `_expectedNonce`. function incrementMinNonceIfEquals(uint256 _expectedNonce) external; /// @dev Returns the deployment nonce for the accounts used for CREATE opcode. function getDeploymentNonce(address _address) external view returns (uint256); /// @dev Increments the deployment nonce for the account and returns the previous one. function incrementDeploymentNonce(address _address) external returns (uint256); /// @dev Determines whether a certain nonce has been already used for an account. function validateNonceUsage(address _address, uint256 _key, bool _shouldBeUsed) external view; /// @dev Returns whether a nonce has been used for an account. function isNonceUsed(address _address, uint256 _nonce) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; struct ImmutableData { uint256 index; bytes32 value; } interface IImmutableSimulator { function getImmutable(address _dest, uint256 _index) external view returns (bytes32); function setImmutables(address _dest, ImmutableData[] calldata _immutables) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./interfaces/IBootloaderUtilities.sol"; import "./libraries/TransactionHelper.sol"; import "./libraries/RLPEncoder.sol"; import "./libraries/EfficientCall.sol"; /** * @author Matter Labs * @notice A contract that provides some utility methods for the bootloader * that is very hard to write in Yul. */ contract BootloaderUtilities is IBootloaderUtilities { using TransactionHelper for *; /// @notice Calculates the canonical transaction hash and the recommended transaction hash. /// @param _transaction The transaction. /// @return txHash and signedTxHash of the transaction, i.e. the transaction hash to be used in the explorer and commits to all /// the fields of the transaction and the recommended hash to be signed for this transaction. /// @dev txHash must be unique for all transactions. function getTransactionHashes( Transaction calldata _transaction ) external view override returns (bytes32 txHash, bytes32 signedTxHash) { signedTxHash = _transaction.encodeHash(); if (_transaction.txType == EIP_712_TX_TYPE) { txHash = keccak256(bytes.concat(signedTxHash, EfficientCall.keccak(_transaction.signature))); } else if (_transaction.txType == LEGACY_TX_TYPE) { txHash = encodeLegacyTransactionHash(_transaction); } else if (_transaction.txType == EIP_1559_TX_TYPE) { txHash = encodeEIP1559TransactionHash(_transaction); } else if (_transaction.txType == EIP_2930_TX_TYPE) { txHash = encodeEIP2930TransactionHash(_transaction); } else { revert("Unsupported tx type"); } } /// @notice Calculates the hash for a legacy transaction. /// @param _transaction The legacy transaction. /// @return txHash The hash of the transaction. function encodeLegacyTransactionHash(Transaction calldata _transaction) internal view returns (bytes32 txHash) { // Hash of legacy transactions are encoded as one of the: // - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0) // - RLP(nonce, gasPrice, gasLimit, to, value, data) // // In this RLP encoding, only the first one above list appears, so we encode each element // inside list and then concatenate the length of all elements with them. bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); // Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error". bytes memory encodedGasParam; { bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit); } bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } bytes memory rEncoded; { uint256 rInt = uint256(bytes32(_transaction.signature[0:32])); rEncoded = RLPEncoder.encodeUint256(rInt); } bytes memory sEncoded; { uint256 sInt = uint256(bytes32(_transaction.signature[32:64])); sEncoded = RLPEncoder.encodeUint256(sInt); } bytes memory vEncoded; { uint256 vInt = uint256(uint8(_transaction.signature[64])); require(vInt == 27 || vInt == 28, "Invalid v value"); // If the `chainId` is specified in the transaction, then the `v` value is encoded as // `35 + y + 2 * chainId == vInt + 8 + 2 * chainId`, where y - parity bit (see EIP-155). if (_transaction.reserved[0] != 0) { vInt += 8 + block.chainid * 2; } vEncoded = RLPEncoder.encodeUint256(vInt); } bytes memory encodedListLength; unchecked { uint256 listLength = encodedNonce.length + encodedGasParam.length + encodedTo.length + encodedValue.length + encodedDataLength.length + _transaction.data.length + rEncoded.length + sEncoded.length + vEncoded.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( encodedListLength, encodedNonce, encodedGasParam, encodedTo, encodedValue, encodedDataLength, _transaction.data, vEncoded, rEncoded, sEncoded ) ); } /// @notice Calculates the hash for an EIP2930 transaction. /// @param _transaction The EIP2930 transaction. /// @return txHash The hash of the transaction. function encodeEIP2930TransactionHash(Transaction calldata _transaction) internal view returns (bytes32) { // Encode all fixed-length params to avoid "stack too deep error" bytes memory encodedFixedLengthParams; { bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid); bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); encodedFixedLengthParams = bytes.concat( encodedChainId, encodedNonce, encodedGasPrice, encodedGasLimit, encodedTo, encodedValue ); } // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // On zkSync, access lists are always zero length (at least for now). bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0); bytes memory rEncoded; { uint256 rInt = uint256(bytes32(_transaction.signature[0:32])); rEncoded = RLPEncoder.encodeUint256(rInt); } bytes memory sEncoded; { uint256 sInt = uint256(bytes32(_transaction.signature[32:64])); sEncoded = RLPEncoder.encodeUint256(sInt); } bytes memory vEncoded; { uint256 vInt = uint256(uint8(_transaction.signature[64])); require(vInt == 27 || vInt == 28, "Invalid v value"); vEncoded = RLPEncoder.encodeUint256(vInt - 27); } bytes memory encodedListLength; unchecked { uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length + encodedAccessListLength.length + rEncoded.length + sEncoded.length + vEncoded.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( "\x01", encodedListLength, encodedFixedLengthParams, encodedDataLength, _transaction.data, encodedAccessListLength, vEncoded, rEncoded, sEncoded ) ); } /// @notice Calculates the hash for an EIP1559 transaction. /// @param _transaction The legacy transaction. /// @return txHash The hash of the transaction. function encodeEIP1559TransactionHash(Transaction calldata _transaction) internal view returns (bytes32) { // The formula for hash of EIP1559 transaction in the original proposal: // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md // Encode all fixed-length params to avoid "stack too deep error" bytes memory encodedFixedLengthParams; { bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid); bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas); bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); encodedFixedLengthParams = bytes.concat( encodedChainId, encodedNonce, encodedMaxPriorityFeePerGas, encodedMaxFeePerGas, encodedGasLimit, encodedTo, encodedValue ); } // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // On zkSync, access lists are always zero length (at least for now). bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0); bytes memory rEncoded; { uint256 rInt = uint256(bytes32(_transaction.signature[0:32])); rEncoded = RLPEncoder.encodeUint256(rInt); } bytes memory sEncoded; { uint256 sInt = uint256(bytes32(_transaction.signature[32:64])); sEncoded = RLPEncoder.encodeUint256(sInt); } bytes memory vEncoded; { uint256 vInt = uint256(uint8(_transaction.signature[64])); require(vInt == 27 || vInt == 28, "Invalid v value"); vEncoded = RLPEncoder.encodeUint256(vInt - 27); } bytes memory encodedListLength; unchecked { uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length + encodedAccessListLength.length + rEncoded.length + sEncoded.length + vEncoded.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( "\x02", encodedListLength, encodedFixedLengthParams, encodedDataLength, _transaction.data, encodedAccessListLength, vEncoded, rEncoded, sEncoded ) ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IL1Messenger { // Possibly in the future we will be able to track the messages sent to L1 with // some hooks in the VM. For now, it is much easier to track them with L2 events. event L1MessageSent(address indexed _sender, bytes32 indexed _hash, bytes _message); function sendToL1(bytes memory _message) external returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IKnownCodesStorage { event MarkedAsKnown(bytes32 indexed bytecodeHash, bool indexed sendBytecodeToL1); function markFactoryDeps(bool _shouldSendToL1, bytes32[] calldata _hashes) external; function markBytecodeAsPublished( bytes32 _bytecodeHash, bytes32 _l1PreimageHash, uint256 _l1PreimageBytesLen ) external; function getMarker(bytes32 _hash) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IEthToken { function balanceOf(uint256) external view returns (uint256); function transferFromTo(address _from, address _to, uint256 _amount) external; function totalSupply() external view returns (uint256); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function mint(address _account, uint256 _amount) external; function withdraw(address _l1Receiver) external payable; event Mint(address indexed account, uint256 amount); event Transfer(address indexed from, address indexed to, uint256 value); event Withdrawal(address indexed _l2Sender, address indexed _l1Receiver, uint256 _amount); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IBytecodeCompressor { function publishCompressedBytecode( bytes calldata _bytecode, bytes calldata _rawCompressedData ) external payable returns (bytes32 bytecodeHash); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "./EfficientCall.sol"; /** * @author Matter Labs * @dev Common utilities used in zkSync system contracts */ library Utils { /// @dev Bit mask of bytecode hash "isConstructor" marker bytes32 constant IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK = 0x00ff000000000000000000000000000000000000000000000000000000000000; /// @dev Bit mask to set the "isConstructor" marker in the bytecode hash bytes32 constant SET_IS_CONSTRUCTOR_MARKER_BIT_MASK = 0x0001000000000000000000000000000000000000000000000000000000000000; function safeCastToU128(uint256 _x) internal pure returns (uint128) { require(_x <= type(uint128).max, "Overflow"); return uint128(_x); } function safeCastToU32(uint256 _x) internal pure returns (uint32) { require(_x <= type(uint32).max, "Overflow"); return uint32(_x); } function safeCastToU24(uint256 _x) internal pure returns (uint24) { require(_x <= type(uint24).max, "Overflow"); return uint24(_x); } /// @return codeLength The bytecode length in bytes function bytecodeLenInBytes(bytes32 _bytecodeHash) internal pure returns (uint256 codeLength) { codeLength = bytecodeLenInWords(_bytecodeHash) << 5; // _bytecodeHash * 32 } /// @return codeLengthInWords The bytecode length in machine words function bytecodeLenInWords(bytes32 _bytecodeHash) internal pure returns (uint256 codeLengthInWords) { unchecked { codeLengthInWords = uint256(uint8(_bytecodeHash[2])) * 256 + uint256(uint8(_bytecodeHash[3])); } } /// @notice Denotes whether bytecode hash corresponds to a contract that already constructed function isContractConstructed(bytes32 _bytecodeHash) internal pure returns (bool) { return _bytecodeHash[1] == 0x00; } /// @notice Denotes whether bytecode hash corresponds to a contract that is on constructor or has already been constructed function isContractConstructing(bytes32 _bytecodeHash) internal pure returns (bool) { return _bytecodeHash[1] == 0x01; } /// @notice Sets "isConstructor" flag to TRUE for the bytecode hash /// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag /// @return The bytecode hash with "isConstructor" flag set to TRUE function constructingBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) { // Clear the "isConstructor" marker and set it to 0x01. return constructedBytecodeHash(_bytecodeHash) | SET_IS_CONSTRUCTOR_MARKER_BIT_MASK; } /// @notice Sets "isConstructor" flag to FALSE for the bytecode hash /// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag /// @return The bytecode hash with "isConstructor" flag set to FALSE function constructedBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) { return _bytecodeHash & ~IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK; } /// @notice Validate the bytecode format and calculate its hash. /// @param _bytecode The bytecode to hash. /// @return hashedBytecode The 32-byte hash of the bytecode. /// Note: The function reverts the execution if the bytecode has non expected format: /// - Bytecode bytes length is not a multiple of 32 /// - Bytecode bytes length is not less than 2^21 bytes (2^16 words) /// - Bytecode words length is not odd function hashL2Bytecode(bytes calldata _bytecode) internal view returns (bytes32 hashedBytecode) { // Note that the length of the bytecode must be provided in 32-byte words. require(_bytecode.length % 32 == 0, "po"); uint256 bytecodeLenInWords = _bytecode.length / 32; require(bytecodeLenInWords < 2 ** 16, "pp"); // bytecode length must be less than 2^16 words require(bytecodeLenInWords % 2 == 1, "pr"); // bytecode length in words must be odd hashedBytecode = EfficientCall.sha(_bytecode) & 0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; // Setting the version of the hash hashedBytecode = (hashedBytecode | bytes32(uint256(1 << 248))); // Setting the length hashedBytecode = hashedBytecode | bytes32(bytecodeLenInWords << 224); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @author Matter Labs * @notice Contract that stores some of the context variables, that may be either * block-scoped, tx-scoped or system-wide. */ interface ISystemContext { function chainId() external view returns (uint256); function origin() external view returns (address); function gasPrice() external view returns (uint256); function blockGasLimit() external view returns (uint256); function coinbase() external view returns (address); function difficulty() external view returns (uint256); function baseFee() external view returns (uint256); function blockHash(uint256 _block) external view returns (bytes32); function getBlockHashEVM(uint256 _block) external view returns (bytes32); function getBlockNumberAndTimestamp() external view returns (uint256 blockNumber, uint256 blockTimestamp); // Note, that for now, the implementation of the bootloader allows this variables to // be incremented multiple times inside a block, so it should not relied upon right now. function getBlockNumber() external view returns (uint256); function getBlockTimestamp() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8; import {MAX_SYSTEM_CONTRACT_ADDRESS, MSG_VALUE_SYSTEM_CONTRACT} from "../Constants.sol"; import "./SystemContractsCaller.sol"; import "./Utils.sol"; uint256 constant UINT32_MASK = 0xffffffff; uint256 constant UINT128_MASK = 0xffffffffffffffffffffffffffffffff; /// @dev The mask that is used to convert any uint256 to a proper address. /// It needs to be padded with `00` to be treated as uint256 by Solidity uint256 constant ADDRESS_MASK = 0x00ffffffffffffffffffffffffffffffffffffffff; struct ZkSyncMeta { uint32 gasPerPubdataByte; uint32 heapSize; uint32 auxHeapSize; uint8 shardId; uint8 callerShardId; uint8 codeShardId; } enum Global { CalldataPtr, CallFlags, ExtraABIData1, ExtraABIData2, ReturndataPtr } /** * @author Matter Labs * @notice Library used for accessing zkEVM-specific opcodes, needed for the development * of system contracts. * @dev While this library will be eventually available to public, some of the provided * methods won't work for non-system contracts. We will not recommend this library * for external use. */ library SystemContractHelper { /// @notice Send an L2Log to L1. /// @param _isService The `isService` flag. /// @param _key The `key` part of the L2Log. /// @param _value The `value` part of the L2Log. /// @dev The meaning of all these parameters is context-dependent, but they /// have no intrinsic meaning per se. function toL1(bool _isService, bytes32 _key, bytes32 _value) internal { address callAddr = TO_L1_CALL_ADDRESS; assembly { // Ensuring that the type is bool _isService := and(_isService, 1) // This `success` is always 0, but the method always succeeds // (except for the cases when there is not enough gas) let success := call(_isService, callAddr, _key, _value, 0xFFFF, 0, 0) } } /// @notice Get address of the currently executed code. /// @dev This allows differentiating between `call` and `delegatecall`. /// During the former `this` and `codeAddress` are the same, while /// during the latter they are not. function getCodeAddress() internal view returns (address addr) { address callAddr = CODE_ADDRESS_CALL_ADDRESS; assembly { addr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Provide a compiler hint, by placing calldata fat pointer into virtual `ACTIVE_PTR`, /// that can be manipulated by `ptr.add`/`ptr.sub`/`ptr.pack`/`ptr.shrink` later. /// @dev This allows making a call by forwarding calldata pointer to the child call. /// It is a much more efficient way to forward calldata, than standard EVM bytes copying. function loadCalldataIntoActivePtr() internal view { address callAddr = LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS; assembly { pop(staticcall(0, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice Compiler simulation of the `ptr.pack` opcode for the virtual `ACTIVE_PTR` pointer. /// @dev Do the concatenation between lowest part of `ACTIVE_PTR` and highest part of `_farCallAbi` /// forming packed fat pointer for a far call or ret ABI when necessary. /// Note: Panics if the lowest 128 bits of `_farCallAbi` are not zeroes. function ptrPackIntoActivePtr(uint256 _farCallAbi) internal view { address callAddr = PTR_PACK_INTO_ACTIVE_CALL_ADDRESS; assembly { pop(staticcall(_farCallAbi, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice Compiler simulation of the `ptr.add` opcode for the virtual `ACTIVE_PTR` pointer. /// @dev Transforms `ACTIVE_PTR.offset` into `ACTIVE_PTR.offset + u32(_value)`. If overflow happens then it panics. function ptrAddIntoActive(uint32 _value) internal view { address callAddr = PTR_ADD_INTO_ACTIVE_CALL_ADDRESS; uint256 cleanupMask = UINT32_MASK; assembly { // Clearing input params as they are not cleaned by Solidity by default _value := and(_value, cleanupMask) pop(staticcall(_value, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice Compiler simulation of the `ptr.shrink` opcode for the virtual `ACTIVE_PTR` pointer. /// @dev Transforms `ACTIVE_PTR.length` into `ACTIVE_PTR.length - u32(_shrink)`. If underflow happens then it panics. function ptrShrinkIntoActive(uint32 _shrink) internal view { address callAddr = PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS; uint256 cleanupMask = UINT32_MASK; assembly { // Clearing input params as they are not cleaned by Solidity by default _shrink := and(_shrink, cleanupMask) pop(staticcall(_shrink, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice packs precompile parameters into one word /// @param _inputMemoryOffset The memory offset in 32-byte words for the input data for calling the precompile. /// @param _inputMemoryLength The length of the input data in words. /// @param _outputMemoryOffset The memory offset in 32-byte words for the output data. /// @param _outputMemoryLength The length of the output data in words. /// @param _perPrecompileInterpreted The constant, the meaning of which is defined separately for /// each precompile. For information, please read the documentation of the precompilecall log in /// the VM. function packPrecompileParams( uint32 _inputMemoryOffset, uint32 _inputMemoryLength, uint32 _outputMemoryOffset, uint32 _outputMemoryLength, uint64 _perPrecompileInterpreted ) internal pure returns (uint256 rawParams) { rawParams = _inputMemoryOffset; rawParams |= uint256(_inputMemoryLength) << 32; rawParams |= uint256(_outputMemoryOffset) << 64; rawParams |= uint256(_outputMemoryLength) << 96; rawParams |= uint256(_perPrecompileInterpreted) << 192; } /// @notice Call precompile with given parameters. /// @param _rawParams The packed precompile params. They can be retrieved by /// the `packPrecompileParams` method. /// @param _gasToBurn The number of gas to burn during this call. /// @return success Whether the call was successful. /// @dev The list of currently available precompiles sha256, keccak256, ecrecover. /// NOTE: The precompile type depends on `this` which calls precompile, which means that only /// system contracts corresponding to the list of precompiles above can do `precompileCall`. /// @dev If used not in the `sha256`, `keccak256` or `ecrecover` contracts, it will just burn the gas provided. function precompileCall(uint256 _rawParams, uint32 _gasToBurn) internal view returns (bool success) { address callAddr = PRECOMPILE_CALL_ADDRESS; // After `precompileCall` gas will be burned down to 0 if there are not enough of them, // thats why it should be checked before the call. require(gasleft() >= _gasToBurn); uint256 cleanupMask = UINT32_MASK; assembly { // Clearing input params as they are not cleaned by Solidity by default _gasToBurn := and(_gasToBurn, cleanupMask) success := staticcall(_rawParams, callAddr, _gasToBurn, 0xFFFF, 0, 0) } } /// @notice Set `msg.value` to next far call. /// @param _value The msg.value that will be used for the *next* call. /// @dev If called not in kernel mode, it will result in a revert (enforced by the VM) function setValueForNextFarCall(uint128 _value) internal returns (bool success) { uint256 cleanupMask = UINT128_MASK; address callAddr = SET_CONTEXT_VALUE_CALL_ADDRESS; assembly { // Clearing input params as they are not cleaned by Solidity by default _value := and(_value, cleanupMask) success := call(0, callAddr, _value, 0, 0xFFFF, 0, 0) } } /// @notice Initialize a new event. /// @param initializer The event initializing value. /// @param value1 The first topic or data chunk. function eventInitialize(uint256 initializer, uint256 value1) internal { address callAddr = EVENT_INITIALIZE_ADDRESS; assembly { pop(call(initializer, callAddr, value1, 0, 0xFFFF, 0, 0)) } } /// @notice Continue writing the previously initialized event. /// @param value1 The first topic or data chunk. /// @param value2 The second topic or data chunk. function eventWrite(uint256 value1, uint256 value2) internal { address callAddr = EVENT_WRITE_ADDRESS; assembly { pop(call(value1, callAddr, value2, 0, 0xFFFF, 0, 0)) } } /// @notice Get the packed representation of the `ZkSyncMeta` from the current context. /// @return meta The packed representation of the ZkSyncMeta. /// @dev The fields in ZkSyncMeta are NOT tightly packed, i.e. there is a special rule on how /// they are packed. For more information, please read the documentation on ZkSyncMeta. function getZkSyncMetaBytes() internal view returns (uint256 meta) { address callAddr = META_CALL_ADDRESS; assembly { meta := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Returns the bits [offset..offset+size-1] of the meta. /// @param meta Packed representation of the ZkSyncMeta. /// @param offset The offset of the bits. /// @param size The size of the extracted number in bits. /// @return result The extracted number. function extractNumberFromMeta(uint256 meta, uint256 offset, uint256 size) internal pure returns (uint256 result) { // Firstly, we delete all the bits after the field uint256 shifted = (meta << (256 - size - offset)); // Then we shift everything back result = (shifted >> (256 - size)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of gas /// that a single byte sent to L1 as pubdata costs. /// @param meta Packed representation of the ZkSyncMeta. /// @return gasPerPubdataByte The current price in gas per pubdata byte. function getGasPerPubdataByteFromMeta(uint256 meta) internal pure returns (uint32 gasPerPubdataByte) { gasPerPubdataByte = uint32(extractNumberFromMeta(meta, META_GAS_PER_PUBDATA_BYTE_OFFSET, 32)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size /// of the heap in bytes. /// @param meta Packed representation of the ZkSyncMeta. /// @return heapSize The size of the memory in bytes byte. /// @dev The following expression: getHeapSizeFromMeta(getZkSyncMetaBytes()) is /// equivalent to the MSIZE in Solidity. function getHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 heapSize) { heapSize = uint32(extractNumberFromMeta(meta, META_HEAP_SIZE_OFFSET, 32)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size /// of the auxilary heap in bytes. /// @param meta Packed representation of the ZkSyncMeta. /// @return auxHeapSize The size of the auxilary memory in bytes byte. /// @dev You can read more on auxilary memory in the VM1.2 documentation. function getAuxHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 auxHeapSize) { auxHeapSize = uint32(extractNumberFromMeta(meta, META_AUX_HEAP_SIZE_OFFSET, 32)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of `this`. /// @param meta Packed representation of the ZkSyncMeta. /// @return shardId The shardId of `this`. /// @dev Currently only shard 0 (zkRollup) is supported. function getShardIdFromMeta(uint256 meta) internal pure returns (uint8 shardId) { shardId = uint8(extractNumberFromMeta(meta, META_SHARD_ID_OFFSET, 8)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of /// the msg.sender. /// @param meta Packed representation of the ZkSyncMeta. /// @return callerShardId The shardId of the msg.sender. /// @dev Currently only shard 0 (zkRollup) is supported. function getCallerShardIdFromMeta(uint256 meta) internal pure returns (uint8 callerShardId) { callerShardId = uint8(extractNumberFromMeta(meta, META_CALLER_SHARD_ID_OFFSET, 8)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of /// the currently executed code. /// @param meta Packed representation of the ZkSyncMeta. /// @return codeShardId The shardId of the currently executed code. /// @dev Currently only shard 0 (zkRollup) is supported. function getCodeShardIdFromMeta(uint256 meta) internal pure returns (uint8 codeShardId) { codeShardId = uint8(extractNumberFromMeta(meta, META_CODE_SHARD_ID_OFFSET, 8)); } /// @notice Retrieves the ZkSyncMeta structure. /// @return meta The ZkSyncMeta execution context parameters. function getZkSyncMeta() internal view returns (ZkSyncMeta memory meta) { uint256 metaPacked = getZkSyncMetaBytes(); meta.gasPerPubdataByte = getGasPerPubdataByteFromMeta(metaPacked); meta.shardId = getShardIdFromMeta(metaPacked); meta.callerShardId = getCallerShardIdFromMeta(metaPacked); meta.codeShardId = getCodeShardIdFromMeta(metaPacked); } /// @notice Returns the call flags for the current call. /// @return callFlags The bitmask of the callflags. /// @dev Call flags is the value of the first register /// at the start of the call. /// @dev The zero bit of the callFlags indicates whether the call is /// a constructor call. The first bit of the callFlags indicates whether /// the call is a system one. function getCallFlags() internal view returns (uint256 callFlags) { address callAddr = CALLFLAGS_CALL_ADDRESS; assembly { callFlags := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Returns the current calldata pointer. /// @return ptr The current calldata pointer. /// @dev NOTE: This file is just an integer and it can not be used /// to forward the calldata to the next calls in any way. function getCalldataPtr() internal view returns (uint256 ptr) { address callAddr = PTR_CALLDATA_CALL_ADDRESS; assembly { ptr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Returns the N-th extraAbiParam for the current call. /// @return extraAbiData The value of the N-th extraAbiParam for this call. /// @dev It is equal to the value of the (N+2)-th register /// at the start of the call. function getExtraAbiData(uint256 index) internal view returns (uint256 extraAbiData) { require(index < 10, "There are only 10 accessible registers"); address callAddr = GET_EXTRA_ABI_DATA_ADDRESS; assembly { extraAbiData := staticcall(index, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Retuns whether the current call is a system call. /// @return `true` or `false` based on whether the current call is a system call. function isSystemCall() internal view returns (bool) { uint256 callFlags = getCallFlags(); // When the system call is passed, the 2-bit it set to 1 return (callFlags & 2) != 0; } /// @notice Returns whether the address is a system contract. /// @param _address The address to test /// @return `true` or `false` based on whether the `_address` is a system contract. function isSystemContract(address _address) internal pure returns (bool) { return uint160(_address) <= uint160(MAX_SYSTEM_CONTRACT_ADDRESS); } } /// @dev Solidity does not allow exporting modifiers via libraries, so /// the only way to do reuse modifiers is to have a base contract abstract contract ISystemContract { /// @notice Modifier that makes sure that the method /// can only be called via a system call. modifier onlySystemCall() { require( SystemContractHelper.isSystemCall() || SystemContractHelper.isSystemContract(msg.sender), "This method require system call flag" ); _; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../libraries/TransactionHelper.sol"; interface IBootloaderUtilities { function getTransactionHashes( Transaction calldata _transaction ) external view returns (bytes32 txHash, bytes32 signedTxHash); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../openzeppelin/token/ERC20/IERC20.sol"; import "../openzeppelin/token/ERC20/utils/SafeERC20.sol"; import "../interfaces/IPaymasterFlow.sol"; import "../interfaces/IContractDeployer.sol"; import {ETH_TOKEN_SYSTEM_CONTRACT, BOOTLOADER_FORMAL_ADDRESS} from "../Constants.sol"; import "./RLPEncoder.sol"; import "./EfficientCall.sol"; /// @dev The type id of zkSync's EIP-712-signed transaction. uint8 constant EIP_712_TX_TYPE = 0x71; /// @dev The type id of legacy transactions. uint8 constant LEGACY_TX_TYPE = 0x0; /// @dev The type id of legacy transactions. uint8 constant EIP_2930_TX_TYPE = 0x01; /// @dev The type id of EIP1559 transactions. uint8 constant EIP_1559_TX_TYPE = 0x02; /// @notice Structure used to represent zkSync transaction. struct Transaction { // The type of the transaction. uint256 txType; // The caller. uint256 from; // The callee. uint256 to; // The gasLimit to pass with the transaction. // It has the same meaning as Ethereum's gasLimit. uint256 gasLimit; // The maximum amount of gas the user is willing to pay for a byte of pubdata. uint256 gasPerPubdataByteLimit; // The maximum fee per gas that the user is willing to pay. // It is akin to EIP1559's maxFeePerGas. uint256 maxFeePerGas; // The maximum priority fee per gas that the user is willing to pay. // It is akin to EIP1559's maxPriorityFeePerGas. uint256 maxPriorityFeePerGas; // The transaction's paymaster. If there is no paymaster, it is equal to 0. uint256 paymaster; // The nonce of the transaction. uint256 nonce; // The value to pass with the transaction. uint256 value; // In the future, we might want to add some // new fields to the struct. The `txData` struct // is to be passed to account and any changes to its structure // would mean a breaking change to these accounts. In order to prevent this, // we should keep some fields as "reserved". // It is also recommended that their length is fixed, since // it would allow easier proof integration (in case we will need // some special circuit for preprocessing transactions). uint256[4] reserved; // The transaction's calldata. bytes data; // The signature of the transaction. bytes signature; // The properly formatted hashes of bytecodes that must be published on L1 // with the inclusion of this transaction. Note, that a bytecode has been published // before, the user won't pay fees for its republishing. bytes32[] factoryDeps; // The input to the paymaster. bytes paymasterInput; // Reserved dynamic type for the future use-case. Using it should be avoided, // But it is still here, just in case we want to enable some additional functionality. bytes reservedDynamic; } /** * @author Matter Labs * @notice Library is used to help custom accounts to work with common methods for the Transaction type. */ library TransactionHelper { using SafeERC20 for IERC20; /// @notice The EIP-712 typehash for the contract's domain bytes32 constant EIP712_DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,string version,uint256 chainId)"); bytes32 constant EIP712_TRANSACTION_TYPE_HASH = keccak256( "Transaction(uint256 txType,uint256 from,uint256 to,uint256 gasLimit,uint256 gasPerPubdataByteLimit,uint256 maxFeePerGas,uint256 maxPriorityFeePerGas,uint256 paymaster,uint256 nonce,uint256 value,bytes data,bytes32[] factoryDeps,bytes paymasterInput)" ); /// @notice Whether the token is Ethereum. /// @param _addr The address of the token /// @return `true` or `false` based on whether the token is Ether. /// @dev This method assumes that address is Ether either if the address is 0 (for convenience) /// or if the address is the address of the L2EthToken system contract. function isEthToken(uint256 _addr) internal pure returns (bool) { return _addr == uint256(uint160(address(ETH_TOKEN_SYSTEM_CONTRACT))) || _addr == 0; } /// @notice Calculate the suggested signed hash of the transaction, /// i.e. the hash that is signed by EOAs and is recommended to be signed by other accounts. function encodeHash(Transaction calldata _transaction) internal view returns (bytes32 resultHash) { if (_transaction.txType == LEGACY_TX_TYPE) { resultHash = _encodeHashLegacyTransaction(_transaction); } else if (_transaction.txType == EIP_712_TX_TYPE) { resultHash = _encodeHashEIP712Transaction(_transaction); } else if (_transaction.txType == EIP_1559_TX_TYPE) { resultHash = _encodeHashEIP1559Transaction(_transaction); } else if (_transaction.txType == EIP_2930_TX_TYPE) { resultHash = _encodeHashEIP2930Transaction(_transaction); } else { // Currently no other transaction types are supported. // Any new transaction types will be processed in a similar manner. revert("Encoding unsupported tx"); } } /// @notice Encode hash of the zkSync native transaction type. /// @return keccak256 hash of the EIP-712 encoded representation of transaction function _encodeHashEIP712Transaction(Transaction calldata _transaction) private view returns (bytes32) { bytes32 structHash = keccak256( abi.encode( EIP712_TRANSACTION_TYPE_HASH, _transaction.txType, _transaction.from, _transaction.to, _transaction.gasLimit, _transaction.gasPerPubdataByteLimit, _transaction.maxFeePerGas, _transaction.maxPriorityFeePerGas, _transaction.paymaster, _transaction.nonce, _transaction.value, EfficientCall.keccak(_transaction.data), keccak256(abi.encodePacked(_transaction.factoryDeps)), EfficientCall.keccak(_transaction.paymasterInput) ) ); bytes32 domainSeparator = keccak256( abi.encode(EIP712_DOMAIN_TYPEHASH, keccak256("zkSync"), keccak256("2"), block.chainid) ); return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } /// @notice Encode hash of the legacy transaction type. /// @return keccak256 of the serialized RLP encoded representation of transaction function _encodeHashLegacyTransaction(Transaction calldata _transaction) private view returns (bytes32) { // Hash of legacy transactions are encoded as one of the: // - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0) // - RLP(nonce, gasPrice, gasLimit, to, value, data) // // In this RLP encoding, only the first one above list appears, so we encode each element // inside list and then concatenate the length of all elements with them. bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); // Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error". bytes memory encodedGasParam; { bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit); } bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // Encode `chainId` according to EIP-155, but only if the `chainId` is specified in the transaction. bytes memory encodedChainId; if (_transaction.reserved[0] != 0) { encodedChainId = bytes.concat(RLPEncoder.encodeUint256(block.chainid), hex"80_80"); } bytes memory encodedListLength; unchecked { uint256 listLength = encodedNonce.length + encodedGasParam.length + encodedTo.length + encodedValue.length + encodedDataLength.length + _transaction.data.length + encodedChainId.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( encodedListLength, encodedNonce, encodedGasParam, encodedTo, encodedValue, encodedDataLength, _transaction.data, encodedChainId ) ); } /// @notice Encode hash of the EIP2930 transaction type. /// @return keccak256 of the serialized RLP encoded representation of transaction function _encodeHashEIP2930Transaction(Transaction calldata _transaction) private view returns (bytes32) { // Hash of EIP2930 transactions is encoded the following way: // H(0x01 || RLP(chain_id, nonce, gas_price, gas_limit, destination, amount, data, access_list)) // // Note, that on zkSync access lists are not supported and should always be empty. // Encode all fixed-length params to avoid "stack too deep error" bytes memory encodedFixedLengthParams; { bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid); bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); encodedFixedLengthParams = bytes.concat( encodedChainId, encodedNonce, encodedGasPrice, encodedGasLimit, encodedTo, encodedValue ); } // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // On zkSync, access lists are always zero length (at least for now). bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0); bytes memory encodedListLength; unchecked { uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length + encodedAccessListLength.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( "\x01", encodedListLength, encodedFixedLengthParams, encodedDataLength, _transaction.data, encodedAccessListLength ) ); } /// @notice Encode hash of the EIP1559 transaction type. /// @return keccak256 of the serialized RLP encoded representation of transaction function _encodeHashEIP1559Transaction(Transaction calldata _transaction) private view returns (bytes32) { // Hash of EIP1559 transactions is encoded the following way: // H(0x02 || RLP(chain_id, nonce, max_priority_fee_per_gas, max_fee_per_gas, gas_limit, destination, amount, data, access_list)) // // Note, that on zkSync access lists are not supported and should always be empty. // Encode all fixed-length params to avoid "stack too deep error" bytes memory encodedFixedLengthParams; { bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid); bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas); bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); encodedFixedLengthParams = bytes.concat( encodedChainId, encodedNonce, encodedMaxPriorityFeePerGas, encodedMaxFeePerGas, encodedGasLimit, encodedTo, encodedValue ); } // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // On zkSync, access lists are always zero length (at least for now). bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0); bytes memory encodedListLength; unchecked { uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length + encodedAccessListLength.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( "\x02", encodedListLength, encodedFixedLengthParams, encodedDataLength, _transaction.data, encodedAccessListLength ) ); } /// @notice Processes the common paymaster flows, e.g. setting proper allowance /// for tokens, etc. For more information on the expected behavior, check out /// the "Paymaster flows" section in the documentation. function processPaymasterInput(Transaction calldata _transaction) internal { require(_transaction.paymasterInput.length >= 4, "The standard paymaster input must be at least 4 bytes long"); bytes4 paymasterInputSelector = bytes4(_transaction.paymasterInput[0:4]); if (paymasterInputSelector == IPaymasterFlow.approvalBased.selector) { require( _transaction.paymasterInput.length >= 68, "The approvalBased paymaster input must be at least 68 bytes long" ); // While the actual data consists of address, uint256 and bytes data, // the data is needed only for the paymaster, so we ignore it here for the sake of optimization (address token, uint256 minAllowance) = abi.decode(_transaction.paymasterInput[4:68], (address, uint256)); address paymaster = address(uint160(_transaction.paymaster)); uint256 currentAllowance = IERC20(token).allowance(address(this), paymaster); if (currentAllowance < minAllowance) { // Some tokens, e.g. USDT require that the allowance is firsty set to zero // and only then updated to the new value. IERC20(token).safeApprove(paymaster, 0); IERC20(token).safeApprove(paymaster, minAllowance); } } else if (paymasterInputSelector == IPaymasterFlow.general.selector) { // Do nothing. general(bytes) paymaster flow means that the paymaster must interpret these bytes on his own. } else { revert("Unsupported paymaster flow"); } } /// @notice Pays the required fee for the transaction to the bootloader. /// @dev Currently it pays the maximum amount "_transaction.maxFeePerGas * _transaction.gasLimit", /// it will change in the future. function payToTheBootloader(Transaction calldata _transaction) internal returns (bool success) { address bootloaderAddr = BOOTLOADER_FORMAL_ADDRESS; uint256 amount = _transaction.maxFeePerGas * _transaction.gasLimit; assembly { success := call(gas(), bootloaderAddr, amount, 0, 0, 0, 0) } } // Returns the balance required to process the transaction. function totalRequiredBalance(Transaction calldata _transaction) internal pure returns (uint256 requiredBalance) { if (address(uint160(_transaction.paymaster)) != address(0)) { // Paymaster pays for the fee requiredBalance = _transaction.value; } else { // The user should have enough balance for both the fee and the value of the transaction requiredBalance = _transaction.maxFeePerGas * _transaction.gasLimit + _transaction.value; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; library RLPEncoder { function encodeAddress(address _val) internal pure returns (bytes memory encoded) { // The size is equal to 20 bytes of the address itself + 1 for encoding bytes length in RLP. encoded = new bytes(0x15); bytes20 shiftedVal = bytes20(_val); assembly { // In the first byte we write the encoded length as 0x80 + 0x14 == 0x94. mstore(add(encoded, 0x20), 0x9400000000000000000000000000000000000000000000000000000000000000) // Write address data without stripping zeros. mstore(add(encoded, 0x21), shiftedVal) } } function encodeUint256(uint256 _val) internal pure returns (bytes memory encoded) { unchecked { if (_val < 128) { encoded = new bytes(1); // Handle zero as a non-value, since stripping zeroes results in an empty byte array encoded[0] = (_val == 0) ? bytes1(uint8(128)) : bytes1(uint8(_val)); } else { uint256 hbs = _highestByteSet(_val); encoded = new bytes(hbs + 2); encoded[0] = bytes1(uint8(hbs + 0x81)); uint256 lbs = 31 - hbs; uint256 shiftedVal = _val << (lbs * 8); assembly { mstore(add(encoded, 0x21), shiftedVal) } } } } /// @notice Encodes the size of bytes in RLP format. /// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported. /// NOTE: panics if the length is 1 since the length encoding is ambiguous in this case. function encodeNonSingleBytesLen(uint64 _len) internal pure returns (bytes memory) { assert(_len != 1); return _encodeLength(_len, 0x80); } /// @notice Encodes the size of list items in RLP format. /// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported. function encodeListLen(uint64 _len) internal pure returns (bytes memory) { return _encodeLength(_len, 0xc0); } function _encodeLength(uint64 _len, uint256 _offset) private pure returns (bytes memory encoded) { unchecked { if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len + _offset)); } else { uint256 hbs = _highestByteSet(uint256(_len)); encoded = new bytes(hbs + 2); encoded[0] = bytes1(uint8(_offset + hbs + 56)); uint256 lbs = 31 - hbs; uint256 shiftedVal = uint256(_len) << (lbs * 8); assembly { mstore(add(encoded, 0x21), shiftedVal) } } } } /// @notice Computes the index of the highest byte set in number. /// @notice Uses little endian ordering (The least significant byte has index `0`). /// NOTE: returns `0` for `0` function _highestByteSet(uint256 _number) private pure returns (uint256 hbs) { unchecked { if (_number > type(uint128).max) { _number >>= 128; hbs += 16; } if (_number > type(uint64).max) { _number >>= 64; hbs += 8; } if (_number > type(uint32).max) { _number >>= 32; hbs += 4; } if (_number > type(uint16).max) { _number >>= 16; hbs += 2; } if (_number > type(uint8).max) { hbs += 1; } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @author Matter Labs * @dev The interface that is used for encoding/decoding of * different types of paymaster flows. * @notice This is NOT an interface to be implementated * by contracts. It is just used for encoding. */ interface IPaymasterFlow { function general(bytes calldata input) external; function approvalBased(address _token, uint256 _minAllowance, bytes calldata _innerInput) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transfer.selector, to, value) ); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value) ); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, value) ); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require( oldAllowance >= value, "SafeERC20: decreased allowance below zero" ); uint256 newAllowance = oldAllowance - value; _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require( nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed" ); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall( data, "SafeERC20: low-level call failed" ); if (returndata.length > 0) { // Return data is optional require( abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed" ); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require( address(this).balance >= amount, "Address: insufficient balance" ); (bool success, ) = recipient.call{value: amount}(""); require( success, "Address: unable to send value, recipient may have reverted" ); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue( target, data, 0, "Address: low-level call failed" ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue( target, data, value, "Address: low-level call with value failed" ); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require( address(this).balance >= value, "Address: insufficient balance for call" ); (bool success, bytes memory returndata) = target.call{value: value}( data ); return verifyCallResultFromTarget( target, success, returndata, errorMessage ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall( target, data, "Address: low-level static call failed" ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget( target, success, returndata, errorMessage ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall( target, data, "Address: low-level delegate call failed" ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget( target, success, returndata, errorMessage ); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
{ "evmVersion": "cancun", "optimizer": { "enabled": true, "mode": "3" }, "outputSelection": { "*": { "*": [ "abi" ] } }, "detectMissingLibraries": false, "forceEVMLA": false, "enableEraVMExtensions": true, "libraries": { "contracts/libraries/StringUtils.sol": { "StringUtils": "0x7e390c46302Fb6D7f6C7b4e36937287eB678FBC0" } } }
[{"inputs":[{"internalType":"address","name":"_implementation","type":"address"},{"internalType":"bytes4","name":"_initializerSelector","type":"bytes4"},{"internalType":"address","name":"_registry","type":"address"},{"internalType":"bytes32","name":"_proxyBytecodeHash","type":"bytes32"},{"internalType":"address","name":"_deployer","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ALREADY_CREATED","type":"error"},{"inputs":[],"name":"DEPLOYMENT_FAILED","type":"error"},{"inputs":[],"name":"INVALID_INITIALIZER","type":"error"},{"inputs":[],"name":"NOT_FROM_DEPLOYER","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"accountAddress","type":"address"}],"name":"AGWAccountCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"accountAddress","type":"address"}],"name":"AGWAccountDeployed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"deployer","type":"address"},{"indexed":true,"internalType":"bool","name":"authorized","type":"bool"}],"name":"DeployerAuthorized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newImplementation","type":"address"}],"name":"ImplementationChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newRegistry","type":"address"}],"name":"RegistryChanged","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"accountToDeployer","outputs":[{"internalType":"address","name":"deployer","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"accountAddress","type":"address"}],"name":"agwAccountCreated","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"deployer","type":"address"}],"name":"authorizedDeployers","outputs":[{"internalType":"bool","name":"authorized","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes4","name":"newInitializerSelector","type":"bytes4"}],"name":"changeImplementation","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newRegistry","type":"address"}],"name":"changeRegistry","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"bytes","name":"initializer","type":"bytes"}],"name":"deployAccount","outputs":[{"internalType":"address","name":"accountAddress","type":"address"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"salt","type":"bytes32"}],"name":"getAddressForSalt","outputs":[{"internalType":"address","name":"accountAddress","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"address","name":"_implementation","type":"address"}],"name":"getAddressForSaltAndImplementation","outputs":[{"internalType":"address","name":"accountAddress","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"implementationAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initializerSelector","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proxyBytecodeHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"registry","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"salt","type":"bytes32"}],"name":"saltToAccount","outputs":[{"internalType":"address","name":"accountAddress","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"deployer","type":"address"},{"internalType":"bool","name":"authorized","type":"bool"}],"name":"setDeployer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
3cda33510000000000000000000000000000000000000000000000000000000000000000010001b56589f886cf59eeabc5fb5a0de71d1a185c1e5a479b10aca699c88c16000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000c0000000000000000000000000b5261a4c0b15fb128294d1444d5c52afacdaf44eb4e581f5000000000000000000000000000000000000000000000000000000000000000000000000000000006fd256c68282ca53570fb1a74427de8b80b63fa2010000336b05cf204eb0125ab212eb01d057ed4511f12c7a288aa5a55977da5e0000000000000000000000006f6426a9b93a7567fcccbfe5d0d6f26c1085999b0000000000000000000000006f6426a9b93a7567fcccbfe5d0d6f26c1085999b
Deployed Bytecode
0x0012000000000002000600000000000200000060041002700000016303400197000100000031035500020000003103550003000000310355000400000031035500050000003103550006000000310355000700000031035500080000003103550009000000310355000a000000310355000b000000310355000c000000310355000d000000310355000e000000310355000f00000031035500100000003103550011000000010355000001630040019d00000001002001900000005d0000c13d0000008006000039000000400060043f000000040030008c000003bf0000413d000000000201043b000000e002200270000001730020009c000000950000a13d000001740020009c000000b80000213d0000017b0020009c000001660000a13d0000017c0020009c000001900000613d0000017d0020009c000001950000613d0000017e0020009c000003bf0000c13d000000440030008c000003bf0000413d0000000002000416000000000002004b000003bf0000c13d0000000402100370000000000202043b000600000002001d000001660020009c000003bf0000213d0000002401100370000000000201043b000000000002004b0000000001000039000000010100c039000500000002001d000000000012004b000003bf0000c13d000000000100041a00000166021001970000000001000411000000000012004b000002bc0000c13d0000000601000029000000000010043f0000000501000039000000200010043f0000000001000414000001630010009c0000016301008041000000c0011002100000016e011001c700008010020000390588057e0000040f0000000100200190000003bf0000613d000000000101043b000000000201041a000001b1022001970000000506000029000000000262019f000000000021041b0000000001000414000001630010009c0000016301008041000000c00110021000000169011001c70000800d0200003900000003030000390000016f040000410000033b0000013d0000000002000416000000000002004b000003bf0000c13d0000001f0230003900000164022001970000008002200039000000400020043f0000001f0430018f000001650530019800000080025000390000006e0000613d0000008006000039000000000701034f000000007807043c0000000006860436000000000026004b0000006a0000c13d000000000004004b0000007b0000613d000000000151034f0000000304400210000000000502043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f0000000000120435000000c00030008c000003bf0000413d000000800300043d000001660030009c000003bf0000213d000000a00200043d0000016700200198000003bf0000c13d000000c00100043d000600000001001d000001660010009c000003bf0000213d000001000100043d000500000001001d000001660010009c000003bf0000213d000001200600043d000001660060009c000003bf0000213d000000000006004b000002cb0000c13d0000017101000041000000000010043f000000040000043f00000172010000410000058a00010430000001810020009c000000dc0000a13d000001820020009c000001720000a13d000001830020009c000001b40000613d000001840020009c000001cc0000613d000001850020009c000003bf0000c13d0000000001000416000000000001004b000003bf0000c13d0000000101000039000000000201041a00000166032001970000000006000411000000000063004b000002c60000c13d0000016802200197000000000021041b000000000100041a0000016802100197000000000262019f000000000020041b00000000020004140000016605100197000001630020009c0000016302008041000000c00120021000000169011001c70000800d0200003900000003030000390000016a040000410000033c0000013d000001750020009c000001800000a13d000001760020009c000002180000613d000001770020009c0000022c0000613d000001780020009c000003bf0000c13d000000240030008c000003bf0000413d0000000002000416000000000002004b000003bf0000c13d0000000401100370000000000601043b000001660060009c000003bf0000213d000000000100041a00000166051001970000000001000411000000000015004b000002bc0000c13d0000000101000039000000000201041a0000016802200197000000000262019f000000000021041b0000000001000414000001630010009c0000016301008041000000c00110021000000169011001c70000800d0200003900000003030000390000018e040000410000033c0000013d000001880020009c000000fe0000213d0000018b0020009c000002310000613d0000018c0020009c000003bf0000c13d000000240030008c000003bf0000413d0000000002000416000000000002004b000003bf0000c13d0000000401100370000000000501043b000001660050009c000003bf0000213d000000000100041a00000166021001970000000001000411000000000012004b000002bc0000c13d0000000301000039000000000201041a0000016802200197000000000252019f000000000021041b0000000001000414000001630010009c0000016301008041000000c00110021000000169011001c70000800d020000390000000203000039000001b0040000410000033c0000013d000001890020009c000002530000613d0000018a0020009c000003bf0000c13d000000440030008c000003bf0000413d0000000402100370000000000202043b000600000002001d0000002402100370000000000202043b000001950020009c000003bf0000213d0000002304200039000000000034004b000003bf0000813d000400040020003d0000000401100360000000000101043b000500000001001d000001950010009c000003bf0000213d0000002401200039000200000001001d000300050010002d000000030030006b000003bf0000213d0000000601000029000000000010043f0000000701000039000000200010043f0000000001000414000001630010009c0000016301008041000000c0011002100000016e011001c700008010020000390588057e0000040f00000080080000390000000100200190000003bf0000613d000000000101043b000000000101041a0000016600100198000003b40000c13d0000000501000029000000030010008c000003c70000a13d000000040100002900000020011000390000001101100367000000000101043b0000000202000039000000000202041a0000004003200210000000000113013f000001670010009c000003c70000213d00000000010004140000000403000039000000000503041a000000400300043d0000002004000039000000000443043600000166022001970000000000240435000001990030009c000003900000813d0000004002300039000000400020043f00000060063000390000019a070000410000000000760435000000a406300039000000000086043500000084063000390000000000560435000000640530003900000006060000290000000000650435000000e40530003900000000060304330000000000650435000001b2096001970000001f0860018f0000010407300039000000000074004b000003cb0000813d000000000009004b000001620000613d000000000b840019000000000a870019000000200aa0008a000000200bb0008a000000000c9a0019000000000d9b0019000000000d0d04330000000000dc0435000000200990008c0000015c0000c13d000000000008004b000003e10000613d000000000a070019000003d70000013d0000017f0020009c000002a20000613d000001800020009c000003bf0000c13d0000000001000416000000000001004b000003bf0000c13d0000000401000039000000000101041a000000800010043f0000018f01000041000005890001042e000001860020009c000002a70000613d000001870020009c000003bf0000c13d0000000001000416000000000001004b000003bf0000c13d0000000201000039000000000101041a00000040011002100000019701100197000000800010043f0000018f01000041000005890001042e000001790020009c000002b30000613d0000017a0020009c000003bf0000c13d000000240030008c000003bf0000413d0000000002000416000000000002004b000003bf0000c13d0000000401100370000000000101043b000001660010009c000003bf0000213d000000000010043f0000000601000039000002b00000013d0000000001000416000000000001004b000003bf0000c13d000000000100041a000002b80000013d000000240030008c000003bf0000413d0000000002000416000000000002004b000003bf0000c13d0000000401100370000000000101043b000600000001001d000001660010009c000003bf0000213d0000000001000411000000000010043f0000000501000039000000200010043f0000000001000414000001630010009c0000016301008041000000c0011002100000016e011001c700008010020000390588057e0000040f0000000100200190000003bf0000613d000000000101043b000000000101041a000000ff00100190000003330000c13d0000019101000041000000000010043f00000192010000410000058a000104300000000001000416000000000001004b000003bf0000c13d000000000100041a00000166051001970000000002000411000000000025004b000002c10000c13d0000000102000039000000000302041a0000016803300197000000000032041b0000016801100197000000000010041b0000000001000414000001630010009c0000016301008041000000c00110021000000169011001c70000800d0200003900000003030000390000016a0400004100000000060000190000033c0000013d000000240030008c000003bf0000413d0000000002000416000000000002004b000003bf0000c13d0000000401100370000000000101043b000600000001001d000000000010043f0000000701000039000000200010043f0000000001000414000001630010009c0000016301008041000000c0011002100000016e011001c700008010020000390588057e0000040f00000080050000390000000100200190000003bf0000613d000000400400043d000000000101043b000000000101041a0000016601100198000003c10000c13d0000000401000039000000000201041a0000000201000039000000000301041a0000002001000039000000000114043600000166033001970000000000310435000001930040009c000003900000213d000000400b4000390000004000b0043f000001940300004100000000003b0435000000a4034000390000000000530435000000840340003900000006050000290000000000530435000000640340003900000000002304350000000002000410000001660220019700000044034000390000000000230435000000c40340003900000000020404330000000000230435000000200300008a000000000632016f0000001f0520018f000000e404400039000000000041004b000003410000813d000000000006004b000002140000613d00000000085100190000000007540019000000200770008a000000200880008a0000000009670019000000000a680019000000000a0a04330000000000a90435000000200660008c0000020e0000c13d000000000005004b000003570000613d00000000070400190000034d0000013d000000240030008c000003bf0000413d0000000002000416000000000002004b000003bf0000c13d0000000401100370000000000101043b000001660010009c000003bf0000213d000000000010043f0000000501000039000000200010043f0588056c0000040f000000000101041a000000ff001001900000000001000039000000010100c039000000800010043f0000018f01000041000005890001042e0000000001000416000000000001004b000003bf0000c13d0000000101000039000002b70000013d000000440030008c000003bf0000413d0000000002000416000000000002004b000003bf0000c13d0000000402100370000000000502043b000001660050009c000003bf0000213d0000002401100370000000000101043b0000016700100198000003bf0000c13d000000000200041a00000166032001970000000002000411000000000023004b000002c10000c13d0000000203000039000000000203041a0000016c0220019700000040011002700000016d01100197000000000121019f000000000151019f000000000013041b0000000001000414000001630010009c0000016301008041000000c00110021000000169011001c70000800d020000390000016b040000410000033c0000013d000000440030008c000003bf0000413d0000000002000416000000000002004b000003bf0000c13d0000002402100370000000000202043b000001660020009c000003bf0000213d0000000401100370000000000101043b0000000403000039000000000303041a000000a00020043f0000002004000039000000800040043f000000c005000039000000400050043f0000019405000041000000c00050043f00000000050004100000016605500197000000c40050043f000000e40030043f000001040010043f000001240060043f000001440040043f000001640020043f000001840000043f0000000001000414000001630010009c0000016301008041000000c001100210000001af011001c700008006020000390588057e0000040f000000c00a00003900000060031002700000016303300197000000200030008c000000200400003900000000040340190000001f0640018f0000002007400190000000c0057001bf000002860000613d000000000801034f000000008908043c000000000a9a043600000000005a004b000002820000c13d000000000006004b000002930000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f00000000006504350000000100200190000003270000613d0000001f01400039000000600110018f000000c001100039000000400010043f000000200030008c000003bf0000413d000000c00200043d000001660020009c000003bf0000213d0000000000210435000000400110021000000196011001c7000005890001042e0000000001000416000000000001004b000003bf0000c13d0000000301000039000002b70000013d000000240030008c000003bf0000413d0000000002000416000000000002004b000003bf0000c13d0000000401100370000000000101043b000000000010043f0000000701000039000000200010043f0588056c0000040f000002b70000013d0000000001000416000000000001004b000003bf0000c13d0000000201000039000000000101041a0000016601100197000000800010043f0000018f01000041000005890001042e0000018d02000041000000000020043f000000040010043f00000172010000410000058a000104300000018d01000041000000000010043f000000040020043f00000172010000410000058a000104300000018d01000041000000000010043f000000040060043f00000172010000410000058a00010430000000e00100043d000200000001001d0000000101000039000300000002001d000000000201041a0000016802200197000000000021041b000000000100041a0000016802100197000000000262019f000000000020041b0000000002000414000400000003001d0000016605100197000001630020009c0000016302008041000000c00120021000000169011001c70000800d0200003900000003030000390000016a04000041058805790000040f0000000100200190000003bf0000613d0000000203000039000000000103041a000100000001001d0000000001000414000001630010009c0000016301008041000000c00110021000000169011001c70000800d020000390000016b040000410000000405000029058805790000040f000000040300002900000001002001900000000302000029000003bf0000613d00000001010000290000016c0110019700000040022002700000016d02200197000000000112019f000000000131019f0000000202000039000000000012041b0000000303000039000000000103041a000001680110019700000006011001af000000000013041b00000004010000390000000202000029000000000021041b0000000501000029000000000010043f0000000501000039000000200010043f0000000001000414000001630010009c0000016301008041000000c0011002100000016e011001c700008010020000390588057e0000040f0000000100200190000003bf0000613d000000000101043b000000000201041a000001b10220019700000001022001bf000000000021041b0000000001000414000001630010009c0000016301008041000000c00110021000000169011001c70000800d02000039000000030300003900000001060000390000016f040000410000000505000029058805790000040f0000000100200190000003bf0000613d0000002001000039000001000010044300000120000004430000017001000041000005890001042e0000001f0530018f0000016506300198000000400200043d0000000004620019000003a10000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b0000032e0000c13d000003a10000013d0000000001000414000001630010009c0000016301008041000000c00110021000000169011001c70000800d02000039000000020300003900000190040000410000000605000029058805790000040f0000000100200190000003bf0000613d0000000001000019000005890001042e0000000007640019000000000006004b0000034a0000613d00000000080100190000000009040019000000008a0804340000000009a90436000000000079004b000003460000c13d000000000005004b000003570000613d00000000016100190000000305500210000000000607043300000000065601cf000000000656022f00000000010104330000010005500089000000000151022f00000000015101cf000000000161019f00000000001704350000001f01200039000000000131016f00000000024200190000000000020435000000a401100039000001630010009c000001630100804100000060011002100000016300b0009c000001630200004100000000020b40190000004002200210000000000121019f0000000002000414000001630020009c0000016302008041000000c002200210000000000121019f000080060200003900060000000b001d0588057e0000040f000000060b00002900000060031002700000016303300197000000200030008c000000200400003900000000040340190000001f0640018f000000200740019000000000057b00190000037c0000613d000000000801034f00000000090b0019000000008a08043c0000000009a90436000000000059004b000003780000c13d000000000006004b000003890000613d000000000771034f0000000306600210000000000805043300000000086801cf000000000868022f000000000707043b0000010006600089000000000767022f00000000066701cf000000000686019f00000000006504350000000100200190000003960000613d0000001f01400039000000600110018f0000000004b10019000001950040009c000003b80000a13d000001ad01000041000000000010043f0000004101000039000000040010043f00000172010000410000058a000104300000001f0530018f0000016506300198000000400200043d0000000004620019000003a10000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000048004b0000039d0000c13d000000000005004b000003ae0000613d000000000161034f0000000305500210000000000604043300000000065601cf000000000656022f000000000101043b0000010005500089000000000151022f00000000015101cf000000000161019f00000000001404350000006001300210000001630020009c00000163020080410000004002200210000000000112019f0000058a000104300000019801000041000000000010043f00000192010000410000058a00010430000000400040043f000000200030008c000003bf0000413d00000006010000290000000001010433000001660010009c000003c10000a13d00000000010000190000058a000104300000000000140435000001630040009c0000016304008041000000400140021000000196011001c7000005890001042e000001ae01000041000000000010043f00000192010000410000058a00010430000000000a970019000000000009004b000003d40000613d000000000b040019000000000c07001900000000bd0b0434000000000cdc04360000000000ac004b000003d00000c13d000000000008004b000003e10000613d0000000004940019000000030880021000000000090a043300000000098901cf000000000989022f00000000040404330000010008800089000000000484022f00000000048401cf000000000494019f00000000004a043500000000047600190000000000040435000000c403300039000000010400003900000000004304350000001f03600039000001b203300197000000a4043000390000000000420435000000e303300039000001b2043001970000000003240019000000000043004b00000000040000390000000104004039000001950030009c000003900000213d0000000100400190000003900000c13d000000400030043f00000000040204330000019b0040009c000004080000413d0000004401300039000001aa020000410000000000210435000000240130003900000008020000390000000000210435000001ab010000410000000000130435000000040130003900000020020000390000000000210435000001630030009c00000163030080410000004001300210000001ac011001c70000058a00010430000000c0011002100000019c0110019700000040022002100000019d0220009a0000019e02200197000000000121019f00000060024002100000019f02200197000000000121019f000001a0011001c700008006020000390000000003000019000000000400001900000000050000190000000006000019058805790000040f000000600310027000000163053001970000001f0350003900000164063001970000003f03600039000001a107300197000000400300043d0000000004370019000000000074004b00000000070000390000000107004039000001950040009c000003900000213d0000000100700190000003900000c13d000000400040043f0000000004530436000000000006004b000004330000613d0000000006640019000000000700003100000011077003670000000008040019000000007907043c0000000008980436000000000068004b0000042f0000c13d0000001f0650018f000001650750019800000000057400190000043d0000613d000000000801034f0000000009040019000000008a08043c0000000009a90436000000000059004b000004390000c13d000000000006004b0000044a0000613d000000000171034f0000000306600210000000000705043300000000076701cf000000000767022f000000000101043b0000010006600089000000000161022f00000000016101cf000000000171019f00000000001504350000000100200190000004930000613d0000000001030433000001a30010009c000003bf0000213d000000200010008c000003bf0000413d0000000001040433000500000001001d000001660010009c000003bf0000213d0000000501000029000000000010043f0000000601000039000000200010043f0000000001000414000001630010009c0000016301008041000000c0011002100000016e011001c700008010020000390588057e0000040f0000000100200190000003bf0000613d00000000020004110000016602200197000000000101043b000000000301041a0000016803300197000000000223019f000000000021041b0000000601000029000000000010043f0000000701000039000000200010043f0000000001000414000001630010009c0000016301008041000000c0011002100000016e011001c700008010020000390588057e0000040f0000000100200190000003bf0000613d000000000101043b000000000201041a000001680220019700000005022001af000000000021041b00000002010000290000016302100197000000000100041400000011030003670001000000230355000000000223034f00000000040000310000000003000416000000000003004b000004970000c13d000000030340006c000004990000413d000001630330019700010000003203e5000001630010009c000004a30000213d00000000023203df000000c0011002100000019c01100197000001a5011001c700010000001203b500000000011203af0000000502000029000004be0000013d000001a201000041000000000010043f00000192010000410000058a00010430000000030440006c0000049f0000813d000001ad01000041000000000010043f0000001101000039000000040010043f00000172010000410000058a00010430000001630440019700010000004203e50000019b0010009c000004b40000413d000000400100043d0000004402100039000001aa030000410000000000320435000000240210003900000008030000390000000000320435000001ab020000410000000000210435000000040210003900000020030000390000000000320435000001630010009c00000163010080410000004001100210000001ac011001c70000058a0001043000000000024203df000000c0011002100000019c01100197000001a4011001c700010000001203b500000000011203af0000800902000039000000050400002900000000050000190000000006000019058805830000040f000000600310027000000163033001970000000100200190000005360000613d0000001f0230003900000164042001970000003f02400039000001a105200197000000400200043d0000000005520019000000000025004b00000000060000390000000106004039000001950050009c000003900000213d0000000100600190000003900000c13d000000400050043f0000000002320436000000000004004b000004dc0000613d0000000004420019000000000500003100000011055003670000000006020019000000005705043c0000000006760436000000000046004b000004d80000c13d0000001f0430018f00000165053001980000000003520019000004e50000613d000000000601034f000000006706043c0000000002720436000000000032004b000004e10000c13d000000000004004b000004f20000613d000000000151034f0000000302400210000000000403043300000000042401cf000000000424022f000000000101043b0000010002200089000000000121022f00000000012101cf000000000141019f00000000001304350000000301000039000000000101041a000001a60200004100000000002004430000016601100197000600000001001d00000004001004430000000001000414000001630010009c0000016301008041000000c001100210000001a7011001c700008002020000390588057e0000040f00000001002001900000054e0000613d000000000101043b000000000001004b000003bf0000613d000000400200043d000001a8010000410000000000120435000400000002001d00000004012000390000000502000029000000000021043500000000010004140000000602000029000000040020008c0000051d0000613d0000000402000029000001630020009c00000163020080410000004002200210000001630010009c0000016301008041000000c001100210000000000121019f00000172011001c70000000602000029058805790000040f00000001002001900000054f0000613d0000000401000029000001950010009c000003900000213d0000000401000029000000400010043f0000000001000414000001630010009c0000016301008041000000c00110021000000169011001c70000800d020000390000000203000039000001a9040000410000000505000029058805790000040f0000000100200190000003bf0000613d000000400100043d00000005020000290000000000210435000001630010009c0000016301008041000000400110021000000196011001c7000005890001042e0000001f0430018f00000165023001980000053f0000613d000000000501034f0000000006000019000000005705043c0000000006760436000000000026004b0000053b0000c13d000000000004004b0000054c0000613d000000000121034f0000000304400210000000000502043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f000000000012043500000060013002100000058a00010430000000000001042f00000060061002700000001f0460018f0000016505600198000000400200043d00000000035200190000055b0000613d000000000701034f0000000008020019000000007907043c0000000008980436000000000038004b000005570000c13d0000016306600197000000000004004b000005690000613d000000000151034f0000000304400210000000000503043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f00000000001304350000006001600210000003af0000013d000000000001042f0000000001000414000001630010009c0000016301008041000000c0011002100000016e011001c700008010020000390588057e0000040f0000000100200190000005770000613d000000000101043b000000000001042d00000000010000190000058a000104300000057c002104210000000102000039000000000001042d0000000002000019000000000001042d00000581002104230000000102000039000000000001042d0000000002000019000000000001042d00000586002104210000000102000039000000000001042d0000000002000019000000000001042d0000058800000432000005890001042e0000058a00010430000000000000000000000000000000000000000000000000000000000000000000000000ffffffff00000000000000000000000000000000000000000000000000000001ffffffe000000000000000000000000000000000000000000000000000000000ffffffe0000000000000000000000000ffffffffffffffffffffffffffffffffffffffff00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000008be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e02989b377844ae55f0ca303ad21490d8519f8cf871ad6b5ba3dbec736bb54c63fffffffffffffffff0000000000000000000000000000000000000000000000000000000000000000ffffffff00000000000000000000000000000000000000000200000000000000000000000000000000000040000000000000000000000000fa27fcd166190505684063d08e30b8ccd6e8d6fa57ff7cb8540164a4b65a128e00000002000000000000000000000000000000400000010000000000000000001e4fbdf7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000024000000000000000000000000000000000000000000000000000000000000000000000000000000007b10399800000000000000000000000000000000000000000000000000000000b97a231800000000000000000000000000000000000000000000000000000000d42ab69b00000000000000000000000000000000000000000000000000000000d42ab69c00000000000000000000000000000000000000000000000000000000e30c397800000000000000000000000000000000000000000000000000000000f2fde38b00000000000000000000000000000000000000000000000000000000b97a231900000000000000000000000000000000000000000000000000000000c43ead14000000000000000000000000000000000000000000000000000000008da5cb5a000000000000000000000000000000000000000000000000000000008da5cb5b000000000000000000000000000000000000000000000000000000009d5c12eb00000000000000000000000000000000000000000000000000000000a34b5ee8000000000000000000000000000000000000000000000000000000007b1039990000000000000000000000000000000000000000000000000000000085f60f7e000000000000000000000000000000000000000000000000000000005a29f9ea00000000000000000000000000000000000000000000000000000000715018a500000000000000000000000000000000000000000000000000000000715018a6000000000000000000000000000000000000000000000000000000007603cc860000000000000000000000000000000000000000000000000000000079ba5097000000000000000000000000000000000000000000000000000000005a29f9eb000000000000000000000000000000000000000000000000000000005bb0c165000000000000000000000000000000000000000000000000000000004d649f06000000000000000000000000000000000000000000000000000000004d649f0700000000000000000000000000000000000000000000000000000000574caef3000000000000000000000000000000000000000000000000000000000704352f0000000000000000000000000000000000000000000000000000000015554c55118cdaa70000000000000000000000000000000000000000000000000000000038d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270000000000000000000000000000000000000000200000008000000000000000005b7a527d0a201b07e1026a1963001355e7e3088adaae59415b3f24e5d8b7055f83f090e3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffbf84da1fb400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffff0000000000000000000000000000000000000020000000000000000000000000ffffffff0000000000000000000000000000000000000000000000000000000026ebf2e800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffc05d38270000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000ffffffff000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffe000000000000000000000000000000000000000000000000000000000ffffffff000000000000000000000000000000000000000000000000ffffffff000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003ffffffe00f02d218000000000000000000000000000000000000000000000000000000007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff010000010000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000001806aa1896bbf26568e884a7374b41e002500962caba6a15023a8d90e8508b8302000002000000000000000000000000000000240000000000000000000000004420e486000000000000000000000000000000000000000000000000000000000700eb47283deba29e13c4c113518c3d05ebfc8b06d4ef4c69dfe66a67dc05cd4f766572666c6f7700000000000000000000000000000000000000000000000008c379a00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000640000000000000000000000004e487b7100000000000000000000000000000000000000000000000000000000350366d70000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c4000000c00000000000000000db0239c63d4033dcdd21bd44f8dd479a03efbae12f6bbe27c0a5f923d26514ccffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe00000000000000000000000000000000000000000000000000000000000000000811ff6bd18e8793545d99abcbb884ad966d2d29bc0ee26ce0f4c44ba3ab3107c
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000b5261a4c0b15fb128294d1444d5c52afacdaf44eb4e581f5000000000000000000000000000000000000000000000000000000000000000000000000000000006fd256c68282ca53570fb1a74427de8b80b63fa2010000336b05cf204eb0125ab212eb01d057ed4511f12c7a288aa5a55977da5e0000000000000000000000006f6426a9b93a7567fcccbfe5d0d6f26c1085999b0000000000000000000000006f6426a9b93a7567fcccbfe5d0d6f26c1085999b
-----Decoded View---------------
Arg [0] : _implementation (address): 0xB5261a4c0b15FB128294D1444D5c52afAcdaF44e
Arg [1] : _initializerSelector (bytes4): 0xb4e581f5
Arg [2] : _registry (address): 0x6FD256c68282CA53570fB1a74427de8b80B63fa2
Arg [3] : _proxyBytecodeHash (bytes32): 0x010000336b05cf204eb0125ab212eb01d057ed4511f12c7a288aa5a55977da5e
Arg [4] : _deployer (address): 0x6f6426a9b93a7567fCCcBfE5d0d6F26c1085999b
Arg [5] : _owner (address): 0x6f6426a9b93a7567fCCcBfE5d0d6F26c1085999b
-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 000000000000000000000000b5261a4c0b15fb128294d1444d5c52afacdaf44e
Arg [1] : b4e581f500000000000000000000000000000000000000000000000000000000
Arg [2] : 0000000000000000000000006fd256c68282ca53570fb1a74427de8b80b63fa2
Arg [3] : 010000336b05cf204eb0125ab212eb01d057ed4511f12c7a288aa5a55977da5e
Arg [4] : 0000000000000000000000006f6426a9b93a7567fcccbfe5d0d6f26c1085999b
Arg [5] : 0000000000000000000000006f6426a9b93a7567fcccbfe5d0d6f26c1085999b
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.