Abstract Testnet

Contract

0x5bd9563daAcc9A9e435990D486B592cdfC5BD5Ca

Overview

ETH Balance

0 ETH

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Transfer*20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
OUT0 ETH0.000004140.04540768
Transfer*20064762024-12-18 6:40:5031 days ago1734504050
0x5bd9563d...dfC5BD5Ca
OUT0 ETH0.000006110.04540768

Latest 25 internal transactions (View All)

Parent Transaction Hash Block From To
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20068832024-12-18 6:48:0231 days ago1734504482
0x5bd9563d...dfC5BD5Ca
0 ETH
20064762024-12-18 6:40:5031 days ago1734504050
0x5bd9563d...dfC5BD5Ca
0 ETH
20064762024-12-18 6:40:5031 days ago1734504050
0x5bd9563d...dfC5BD5Ca
0 ETH
20064762024-12-18 6:40:5031 days ago1734504050
0x5bd9563d...dfC5BD5Ca
0 ETH
20064762024-12-18 6:40:5031 days ago1734504050
0x5bd9563d...dfC5BD5Ca
0 ETH
20064762024-12-18 6:40:5031 days ago1734504050
0x5bd9563d...dfC5BD5Ca
0 ETH
20064762024-12-18 6:40:5031 days ago1734504050
0x5bd9563d...dfC5BD5Ca
0 ETH
20064762024-12-18 6:40:5031 days ago1734504050
0x5bd9563d...dfC5BD5Ca
0 ETH
20064762024-12-18 6:40:5031 days ago1734504050
0x5bd9563d...dfC5BD5Ca
0 ETH
View All Internal Transactions
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0xA0c61846...4ACB6a2d3
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
AccountProxy

Compiler Version
v0.8.26+commit.8a97fa7a

ZkSolc Version
v1.5.6

Optimization Enabled:
Yes with Mode 3

Other Settings:
cancun EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 24 : AccountProxy.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.17;

import {EfficientCall} from '@matterlabs/zksync-contracts/l2/system-contracts/libraries/EfficientCall.sol';

contract AccountProxy {
    event Upgraded(address indexed implementation);

    //keccak-256 of "eip1967.proxy.implementation" subtracted by 1
    bytes32 private constant _IMPLEMENTATION_SLOT =
        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @notice Sets the initial implementation contract.
     * @param implementation address - Address of the implementation contract.
     */
    constructor(address implementation) {
        assembly {
            sstore(_IMPLEMENTATION_SLOT, implementation)
        }
        emit Upgraded(implementation);
    }

    /**
     * @dev Fallback function that delegates the call to the implementation contract.
     */
    fallback() external payable {
        address impl;
        assembly {
            impl := and(sload(_IMPLEMENTATION_SLOT), 0xffffffffffffffffffffffffffffffffffffffff)
        }

        bool success = EfficientCall.rawDelegateCall(gasleft(), impl, msg.data);

        assembly {
            returndatacopy(0, 0, returndatasize())
            switch success
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }
}

File 2 of 24 : EfficientCall.sol
// SPDX-License-Identifier: MIT OR Apache-2.0

pragma solidity ^0.8.0;

import "./SystemContractHelper.sol";
import "./Utils.sol";
import {SHA256_SYSTEM_CONTRACT, KECCAK256_SYSTEM_CONTRACT} from "../Constants.sol";

/**
 * @author Matter Labs
 * @notice This library is used to perform ultra-efficient calls using zkEVM-specific features.
 * @dev EVM calls always accept a memory slice as input and return a memory slice as output.
 * Therefore, even if the user has a ready-made calldata slice, they still need to copy it to memory
 * before calling. This is especially inefficient for large inputs (proxies, multi-calls, etc.).
 * In turn, zkEVM operates over a fat pointer, which is a set of (memory page, offset, start, length) in the memory/calldata/returndata.
 * This allows forwarding the calldata slice as is, without copying it to memory.
 * @dev Fat pointer is not just an integer, it is an extended data type supported on the VM level.
 * zkEVM creates the wellformed fat pointers for all the calldata/returndata regions, later
 * the contract may manipulate the already created fat pointers to forward a slice of the data, but not
 * to create new fat pointers!
 * @dev The allowed operation on fat pointers are:
 * 1. `ptr.add` - Transforms `ptr.offset` into `ptr.offset + u32(_value)`. If overflow happens then it panics.
 * 2. `ptr.sub` - Transforms `ptr.offset` into `ptr.offset - u32(_value)`. If underflow happens then it panics.
 * 3. `ptr.pack` - Do the concatenation between the lowest 128 bits of the pointer itself and the highest 128 bits of `_value`. It is typically used to prepare the ABI for external calls.
 * 4. `ptr.shrink` - Transforms `ptr.length` into `ptr.length - u32(_shrink)`. If underflow happens then it panics.
 * @dev The call opcodes accept the fat pointer and change it to its canonical form before passing it to the child call
 * 1. `ptr.start` is transformed into `ptr.offset + ptr.start`
 * 2. `ptr.length` is transformed into `ptr.length - ptr.offset`
 * 3. `ptr.offset` is transformed into `0`
 */
library EfficientCall {
    /// @notice Call the `keccak256` without copying calldata to memory.
    /// @param _data The preimage data.
    /// @return The `keccak256` hash.
    function keccak(bytes calldata _data) internal view returns (bytes32) {
        bytes memory returnData = staticCall(gasleft(), KECCAK256_SYSTEM_CONTRACT, _data);
        require(returnData.length == 32, "keccak256 returned invalid data");
        return bytes32(returnData);
    }

    /// @notice Call the `sha256` precompile without copying calldata to memory.
    /// @param _data The preimage data.
    /// @return The `sha256` hash.
    function sha(bytes calldata _data) internal view returns (bytes32) {
        bytes memory returnData = staticCall(gasleft(), SHA256_SYSTEM_CONTRACT, _data);
        require(returnData.length == 32, "sha returned invalid data");
        return bytes32(returnData);
    }

    /// @notice Perform a `call` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _value The `msg.value` to send.
    /// @param _data The calldata to use for the call.
    /// @param _isSystem Whether the call should contain the `isSystem` flag.
    /// @return returnData The copied to memory return data.
    function call(
        uint256 _gas,
        address _address,
        uint256 _value,
        bytes calldata _data,
        bool _isSystem
    ) internal returns (bytes memory returnData) {
        bool success = rawCall(_gas, _address, _value, _data, _isSystem);
        returnData = _verifyCallResult(success);
    }

    /// @notice Perform a `staticCall` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @return returnData The copied to memory return data.
    function staticCall(
        uint256 _gas,
        address _address,
        bytes calldata _data
    ) internal view returns (bytes memory returnData) {
        bool success = rawStaticCall(_gas, _address, _data);
        returnData = _verifyCallResult(success);
    }

    /// @notice Perform a `delegateCall` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @return returnData The copied to memory return data.
    function delegateCall(
        uint256 _gas,
        address _address,
        bytes calldata _data
    ) internal returns (bytes memory returnData) {
        bool success = rawDelegateCall(_gas, _address, _data);
        returnData = _verifyCallResult(success);
    }

    /// @notice Perform a `mimicCall` (a call with custom msg.sender) without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @param _whoToMimic The `msg.sender` for the next call.
    /// @param _isConstructor Whether the call should contain the `isConstructor` flag.
    /// @param _isSystem Whether the call should contain the `isSystem` flag.
    /// @return returnData The copied to memory return data.
    function mimicCall(
        uint256 _gas,
        address _address,
        bytes calldata _data,
        address _whoToMimic,
        bool _isConstructor,
        bool _isSystem
    ) internal returns (bytes memory returnData) {
        bool success = rawMimicCall(_gas, _address, _data, _whoToMimic, _isConstructor, _isSystem);
        returnData = _verifyCallResult(success);
    }

    /// @notice Perform a `call` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _value The `msg.value` to send.
    /// @param _data The calldata to use for the call.
    /// @param _isSystem Whether the call should contain the `isSystem` flag.
    /// @return success whether the call was successful.
    function rawCall(
        uint256 _gas,
        address _address,
        uint256 _value,
        bytes calldata _data,
        bool _isSystem
    ) internal returns (bool success) {
        if (_value == 0) {
            _loadFarCallABIIntoActivePtr(_gas, _data, false, _isSystem);

            address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
            assembly {
                success := call(_address, callAddr, 0, 0, 0xFFFF, 0, 0)
            }
        } else {
            _loadFarCallABIIntoActivePtr(_gas, _data, false, true);

            // If there is provided `msg.value` call the `MsgValueSimulator` to forward ether.
            address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT;
            address callAddr = SYSTEM_CALL_BY_REF_CALL_ADDRESS;
            // We need to supply the mask to the MsgValueSimulator to denote
            // that the call should be a system one.
            uint256 forwardMask = _isSystem ? MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT : 0;

            assembly {
                success := call(msgValueSimulator, callAddr, _value, _address, 0xFFFF, forwardMask, 0)
            }
        }
    }

    /// @notice Perform a `staticCall` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @return success whether the call was successful.
    function rawStaticCall(uint256 _gas, address _address, bytes calldata _data) internal view returns (bool success) {
        _loadFarCallABIIntoActivePtr(_gas, _data, false, false);

        address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
        assembly {
            success := staticcall(_address, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Perform a `delegatecall` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @return success whether the call was successful.
    function rawDelegateCall(uint256 _gas, address _address, bytes calldata _data) internal returns (bool success) {
        _loadFarCallABIIntoActivePtr(_gas, _data, false, false);

        address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
        assembly {
            success := delegatecall(_address, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Perform a `mimicCall` (call with custom msg.sender) without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @param _whoToMimic The `msg.sender` for the next call.
    /// @param _isConstructor Whether the call should contain the `isConstructor` flag.
    /// @param _isSystem Whether the call should contain the `isSystem` flag.
    /// @return success whether the call was successful.
    /// @dev If called not in kernel mode, it will result in a revert (enforced by the VM)
    function rawMimicCall(
        uint256 _gas,
        address _address,
        bytes calldata _data,
        address _whoToMimic,
        bool _isConstructor,
        bool _isSystem
    ) internal returns (bool success) {
        _loadFarCallABIIntoActivePtr(_gas, _data, _isConstructor, _isSystem);

        address callAddr = MIMIC_CALL_BY_REF_CALL_ADDRESS;
        uint256 cleanupMask = ADDRESS_MASK;
        assembly {
            // Clearing values before usage in assembly, since Solidity
            // doesn't do it by default
            _whoToMimic := and(_whoToMimic, cleanupMask)

            success := call(_address, callAddr, 0, 0, _whoToMimic, 0, 0)
        }
    }

    /// @dev Verify that a low-level call was successful, and revert if it wasn't, by bubbling the revert reason.
    /// @param _success Whether the call was successful.
    /// @return returnData The copied to memory return data.
    function _verifyCallResult(bool _success) private pure returns (bytes memory returnData) {
        if (_success) {
            uint256 size;
            assembly {
                size := returndatasize()
            }

            returnData = new bytes(size);
            assembly {
                returndatacopy(add(returnData, 0x20), 0, size)
            }
        } else {
            propagateRevert();
        }
    }

    /// @dev Propagate the revert reason from the current call to the caller.
    function propagateRevert() internal pure {
        assembly {
            let size := returndatasize()
            returndatacopy(0, 0, size)
            revert(0, size)
        }
    }

    /// @dev Load the far call ABI into active ptr, that will be used for the next call by reference.
    /// @param _gas The gas to be passed to the call.
    /// @param _data The calldata to be passed to the call.
    /// @param _isConstructor Whether the call is a constructor call.
    /// @param _isSystem Whether the call is a system call.
    function _loadFarCallABIIntoActivePtr(
        uint256 _gas,
        bytes calldata _data,
        bool _isConstructor,
        bool _isSystem
    ) private view {
        SystemContractHelper.loadCalldataIntoActivePtr();

        // Currently, zkEVM considers the pointer valid if(ptr.offset < ptr.length || (ptr.length == 0 && ptr.offset == 0)), otherwise panics.
        // So, if the data is empty we need to make the `ptr.length = ptr.offset = 0`, otherwise follow standard logic.
        if (_data.length == 0) {
            // Safe to cast, offset is never bigger than `type(uint32).max`
            SystemContractHelper.ptrShrinkIntoActive(uint32(msg.data.length));
        } else {
            uint256 dataOffset;
            assembly {
                dataOffset := _data.offset
            }

            // Safe to cast, offset is never bigger than `type(uint32).max`
            SystemContractHelper.ptrAddIntoActive(uint32(dataOffset));
            // Safe to cast, `data.length` is never bigger than `type(uint32).max`
            uint32 shrinkTo = uint32(msg.data.length - (_data.length + dataOffset));
            SystemContractHelper.ptrShrinkIntoActive(shrinkTo);
        }

        uint32 gas = Utils.safeCastToU32(_gas);
        uint256 farCallAbi = SystemContractsCaller.getFarCallABIWithEmptyFatPointer(
            gas,
            // Only rollup is supported for now
            0,
            CalldataForwardingMode.ForwardFatPointer,
            _isConstructor,
            _isSystem
        );
        SystemContractHelper.ptrPackIntoActivePtr(farCallAbi);
    }
}

File 3 of 24 : Utils.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

import "./EfficientCall.sol";

/**
 * @author Matter Labs
 * @dev Common utilities used in zkSync system contracts
 */
library Utils {
    /// @dev Bit mask of bytecode hash "isConstructor" marker
    bytes32 constant IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK =
        0x00ff000000000000000000000000000000000000000000000000000000000000;

    /// @dev Bit mask to set the "isConstructor" marker in the bytecode hash
    bytes32 constant SET_IS_CONSTRUCTOR_MARKER_BIT_MASK =
        0x0001000000000000000000000000000000000000000000000000000000000000;

    function safeCastToU128(uint256 _x) internal pure returns (uint128) {
        require(_x <= type(uint128).max, "Overflow");

        return uint128(_x);
    }

    function safeCastToU32(uint256 _x) internal pure returns (uint32) {
        require(_x <= type(uint32).max, "Overflow");

        return uint32(_x);
    }

    function safeCastToU24(uint256 _x) internal pure returns (uint24) {
        require(_x <= type(uint24).max, "Overflow");

        return uint24(_x);
    }

    /// @return codeLength The bytecode length in bytes
    function bytecodeLenInBytes(bytes32 _bytecodeHash) internal pure returns (uint256 codeLength) {
        codeLength = bytecodeLenInWords(_bytecodeHash) << 5; // _bytecodeHash * 32
    }

    /// @return codeLengthInWords The bytecode length in machine words
    function bytecodeLenInWords(bytes32 _bytecodeHash) internal pure returns (uint256 codeLengthInWords) {
        unchecked {
            codeLengthInWords = uint256(uint8(_bytecodeHash[2])) * 256 + uint256(uint8(_bytecodeHash[3]));
        }
    }

    /// @notice Denotes whether bytecode hash corresponds to a contract that already constructed
    function isContractConstructed(bytes32 _bytecodeHash) internal pure returns (bool) {
        return _bytecodeHash[1] == 0x00;
    }

    /// @notice Denotes whether bytecode hash corresponds to a contract that is on constructor or has already been constructed
    function isContractConstructing(bytes32 _bytecodeHash) internal pure returns (bool) {
        return _bytecodeHash[1] == 0x01;
    }

    /// @notice Sets "isConstructor" flag to TRUE for the bytecode hash
    /// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag
    /// @return The bytecode hash with "isConstructor" flag set to TRUE
    function constructingBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) {
        // Clear the "isConstructor" marker and set it to 0x01.
        return constructedBytecodeHash(_bytecodeHash) | SET_IS_CONSTRUCTOR_MARKER_BIT_MASK;
    }

    /// @notice Sets "isConstructor" flag to FALSE for the bytecode hash
    /// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag
    /// @return The bytecode hash with "isConstructor" flag set to FALSE
    function constructedBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) {
        return _bytecodeHash & ~IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK;
    }

    /// @notice Validate the bytecode format and calculate its hash.
    /// @param _bytecode The bytecode to hash.
    /// @return hashedBytecode The 32-byte hash of the bytecode.
    /// Note: The function reverts the execution if the bytecode has non expected format:
    /// - Bytecode bytes length is not a multiple of 32
    /// - Bytecode bytes length is not less than 2^21 bytes (2^16 words)
    /// - Bytecode words length is not odd
    function hashL2Bytecode(bytes calldata _bytecode) internal view returns (bytes32 hashedBytecode) {
        // Note that the length of the bytecode must be provided in 32-byte words.
        require(_bytecode.length % 32 == 0, "po");

        uint256 bytecodeLenInWords = _bytecode.length / 32;
        require(bytecodeLenInWords < 2 ** 16, "pp"); // bytecode length must be less than 2^16 words
        require(bytecodeLenInWords % 2 == 1, "pr"); // bytecode length in words must be odd
        hashedBytecode =
            EfficientCall.sha(_bytecode) &
            0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        // Setting the version of the hash
        hashedBytecode = (hashedBytecode | bytes32(uint256(1 << 248)));
        // Setting the length
        hashedBytecode = hashedBytecode | bytes32(bytecodeLenInWords << 224);
    }
}

File 4 of 24 : SystemContractHelper.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8;

import {MAX_SYSTEM_CONTRACT_ADDRESS, MSG_VALUE_SYSTEM_CONTRACT} from "../Constants.sol";

import "./SystemContractsCaller.sol";
import "./Utils.sol";

uint256 constant UINT32_MASK = 0xffffffff;
uint256 constant UINT128_MASK = 0xffffffffffffffffffffffffffffffff;
/// @dev The mask that is used to convert any uint256 to a proper address.
/// It needs to be padded with `00` to be treated as uint256 by Solidity
uint256 constant ADDRESS_MASK = 0x00ffffffffffffffffffffffffffffffffffffffff;

struct ZkSyncMeta {
    uint32 gasPerPubdataByte;
    uint32 heapSize;
    uint32 auxHeapSize;
    uint8 shardId;
    uint8 callerShardId;
    uint8 codeShardId;
}

enum Global {
    CalldataPtr,
    CallFlags,
    ExtraABIData1,
    ExtraABIData2,
    ReturndataPtr
}

/**
 * @author Matter Labs
 * @notice Library used for accessing zkEVM-specific opcodes, needed for the development
 * of system contracts.
 * @dev While this library will be eventually available to public, some of the provided
 * methods won't work for non-system contracts. We will not recommend this library
 * for external use.
 */
library SystemContractHelper {
    /// @notice Send an L2Log to L1.
    /// @param _isService The `isService` flag.
    /// @param _key The `key` part of the L2Log.
    /// @param _value The `value` part of the L2Log.
    /// @dev The meaning of all these parameters is context-dependent, but they
    /// have no intrinsic meaning per se.
    function toL1(bool _isService, bytes32 _key, bytes32 _value) internal {
        address callAddr = TO_L1_CALL_ADDRESS;
        assembly {
            // Ensuring that the type is bool
            _isService := and(_isService, 1)
            // This `success` is always 0, but the method always succeeds
            // (except for the cases when there is not enough gas)
            let success := call(_isService, callAddr, _key, _value, 0xFFFF, 0, 0)
        }
    }

    /// @notice Get address of the currently executed code.
    /// @dev This allows differentiating between `call` and `delegatecall`.
    /// During the former `this` and `codeAddress` are the same, while
    /// during the latter they are not.
    function getCodeAddress() internal view returns (address addr) {
        address callAddr = CODE_ADDRESS_CALL_ADDRESS;
        assembly {
            addr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Provide a compiler hint, by placing calldata fat pointer into virtual `ACTIVE_PTR`,
    /// that can be manipulated by `ptr.add`/`ptr.sub`/`ptr.pack`/`ptr.shrink` later.
    /// @dev This allows making a call by forwarding calldata pointer to the child call.
    /// It is a much more efficient way to forward calldata, than standard EVM bytes copying.
    function loadCalldataIntoActivePtr() internal view {
        address callAddr = LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS;
        assembly {
            pop(staticcall(0, callAddr, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice Compiler simulation of the `ptr.pack` opcode for the virtual `ACTIVE_PTR` pointer.
    /// @dev Do the concatenation between lowest part of `ACTIVE_PTR` and highest part of `_farCallAbi`
    /// forming packed fat pointer for a far call or ret ABI when necessary.
    /// Note: Panics if the lowest 128 bits of `_farCallAbi` are not zeroes.
    function ptrPackIntoActivePtr(uint256 _farCallAbi) internal view {
        address callAddr = PTR_PACK_INTO_ACTIVE_CALL_ADDRESS;
        assembly {
            pop(staticcall(_farCallAbi, callAddr, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice Compiler simulation of the `ptr.add` opcode for the virtual `ACTIVE_PTR` pointer.
    /// @dev Transforms `ACTIVE_PTR.offset` into `ACTIVE_PTR.offset + u32(_value)`. If overflow happens then it panics.
    function ptrAddIntoActive(uint32 _value) internal view {
        address callAddr = PTR_ADD_INTO_ACTIVE_CALL_ADDRESS;
        uint256 cleanupMask = UINT32_MASK;
        assembly {
            // Clearing input params as they are not cleaned by Solidity by default
            _value := and(_value, cleanupMask)
            pop(staticcall(_value, callAddr, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice Compiler simulation of the `ptr.shrink` opcode for the virtual `ACTIVE_PTR` pointer.
    /// @dev Transforms `ACTIVE_PTR.length` into `ACTIVE_PTR.length - u32(_shrink)`. If underflow happens then it panics.
    function ptrShrinkIntoActive(uint32 _shrink) internal view {
        address callAddr = PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS;
        uint256 cleanupMask = UINT32_MASK;
        assembly {
            // Clearing input params as they are not cleaned by Solidity by default
            _shrink := and(_shrink, cleanupMask)
            pop(staticcall(_shrink, callAddr, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice packs precompile parameters into one word
    /// @param _inputMemoryOffset The memory offset in 32-byte words for the input data for calling the precompile.
    /// @param _inputMemoryLength The length of the input data in words.
    /// @param _outputMemoryOffset The memory offset in 32-byte words for the output data.
    /// @param _outputMemoryLength The length of the output data in words.
    /// @param _perPrecompileInterpreted The constant, the meaning of which is defined separately for
    /// each precompile. For information, please read the documentation of the precompilecall log in
    /// the VM.
    function packPrecompileParams(
        uint32 _inputMemoryOffset,
        uint32 _inputMemoryLength,
        uint32 _outputMemoryOffset,
        uint32 _outputMemoryLength,
        uint64 _perPrecompileInterpreted
    ) internal pure returns (uint256 rawParams) {
        rawParams = _inputMemoryOffset;
        rawParams |= uint256(_inputMemoryLength) << 32;
        rawParams |= uint256(_outputMemoryOffset) << 64;
        rawParams |= uint256(_outputMemoryLength) << 96;
        rawParams |= uint256(_perPrecompileInterpreted) << 192;
    }

    /// @notice Call precompile with given parameters.
    /// @param _rawParams The packed precompile params. They can be retrieved by
    /// the `packPrecompileParams` method.
    /// @param _gasToBurn The number of gas to burn during this call.
    /// @return success Whether the call was successful.
    /// @dev The list of currently available precompiles sha256, keccak256, ecrecover.
    /// NOTE: The precompile type depends on `this` which calls precompile, which means that only
    /// system contracts corresponding to the list of precompiles above can do `precompileCall`.
    /// @dev If used not in the `sha256`, `keccak256` or `ecrecover` contracts, it will just burn the gas provided.
    function precompileCall(uint256 _rawParams, uint32 _gasToBurn) internal view returns (bool success) {
        address callAddr = PRECOMPILE_CALL_ADDRESS;

        // After `precompileCall` gas will be burned down to 0 if there are not enough of them,
        // thats why it should be checked before the call.
        require(gasleft() >= _gasToBurn);
        uint256 cleanupMask = UINT32_MASK;
        assembly {
            // Clearing input params as they are not cleaned by Solidity by default
            _gasToBurn := and(_gasToBurn, cleanupMask)
            success := staticcall(_rawParams, callAddr, _gasToBurn, 0xFFFF, 0, 0)
        }
    }

    /// @notice Set `msg.value` to next far call.
    /// @param _value The msg.value that will be used for the *next* call.
    /// @dev If called not in kernel mode, it will result in a revert (enforced by the VM)
    function setValueForNextFarCall(uint128 _value) internal returns (bool success) {
        uint256 cleanupMask = UINT128_MASK;
        address callAddr = SET_CONTEXT_VALUE_CALL_ADDRESS;
        assembly {
            // Clearing input params as they are not cleaned by Solidity by default
            _value := and(_value, cleanupMask)
            success := call(0, callAddr, _value, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Initialize a new event.
    /// @param initializer The event initializing value.
    /// @param value1 The first topic or data chunk.
    function eventInitialize(uint256 initializer, uint256 value1) internal {
        address callAddr = EVENT_INITIALIZE_ADDRESS;
        assembly {
            pop(call(initializer, callAddr, value1, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice Continue writing the previously initialized event.
    /// @param value1 The first topic or data chunk.
    /// @param value2 The second topic or data chunk.
    function eventWrite(uint256 value1, uint256 value2) internal {
        address callAddr = EVENT_WRITE_ADDRESS;
        assembly {
            pop(call(value1, callAddr, value2, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice Get the packed representation of the `ZkSyncMeta` from the current context.
    /// @return meta The packed representation of the ZkSyncMeta.
    /// @dev The fields in ZkSyncMeta are NOT tightly packed, i.e. there is a special rule on how
    /// they are packed. For more information, please read the documentation on ZkSyncMeta.
    function getZkSyncMetaBytes() internal view returns (uint256 meta) {
        address callAddr = META_CALL_ADDRESS;
        assembly {
            meta := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Returns the bits [offset..offset+size-1] of the meta.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @param offset The offset of the bits.
    /// @param size The size of the extracted number in bits.
    /// @return result The extracted number.
    function extractNumberFromMeta(uint256 meta, uint256 offset, uint256 size) internal pure returns (uint256 result) {
        // Firstly, we delete all the bits after the field
        uint256 shifted = (meta << (256 - size - offset));
        // Then we shift everything back
        result = (shifted >> (256 - size));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of gas
    /// that a single byte sent to L1 as pubdata costs.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return gasPerPubdataByte The current price in gas per pubdata byte.
    function getGasPerPubdataByteFromMeta(uint256 meta) internal pure returns (uint32 gasPerPubdataByte) {
        gasPerPubdataByte = uint32(extractNumberFromMeta(meta, META_GAS_PER_PUBDATA_BYTE_OFFSET, 32));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size
    /// of the heap in bytes.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return heapSize The size of the memory in bytes byte.
    /// @dev The following expression: getHeapSizeFromMeta(getZkSyncMetaBytes()) is
    /// equivalent to the MSIZE in Solidity.
    function getHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 heapSize) {
        heapSize = uint32(extractNumberFromMeta(meta, META_HEAP_SIZE_OFFSET, 32));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size
    /// of the auxilary heap in bytes.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return auxHeapSize The size of the auxilary memory in bytes byte.
    /// @dev You can read more on auxilary memory in the VM1.2 documentation.
    function getAuxHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 auxHeapSize) {
        auxHeapSize = uint32(extractNumberFromMeta(meta, META_AUX_HEAP_SIZE_OFFSET, 32));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of `this`.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return shardId The shardId of `this`.
    /// @dev Currently only shard 0 (zkRollup) is supported.
    function getShardIdFromMeta(uint256 meta) internal pure returns (uint8 shardId) {
        shardId = uint8(extractNumberFromMeta(meta, META_SHARD_ID_OFFSET, 8));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of
    /// the msg.sender.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return callerShardId The shardId of the msg.sender.
    /// @dev Currently only shard 0 (zkRollup) is supported.
    function getCallerShardIdFromMeta(uint256 meta) internal pure returns (uint8 callerShardId) {
        callerShardId = uint8(extractNumberFromMeta(meta, META_CALLER_SHARD_ID_OFFSET, 8));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of
    /// the currently executed code.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return codeShardId The shardId of the currently executed code.
    /// @dev Currently only shard 0 (zkRollup) is supported.
    function getCodeShardIdFromMeta(uint256 meta) internal pure returns (uint8 codeShardId) {
        codeShardId = uint8(extractNumberFromMeta(meta, META_CODE_SHARD_ID_OFFSET, 8));
    }

    /// @notice Retrieves the ZkSyncMeta structure.
    /// @return meta The ZkSyncMeta execution context parameters.
    function getZkSyncMeta() internal view returns (ZkSyncMeta memory meta) {
        uint256 metaPacked = getZkSyncMetaBytes();
        meta.gasPerPubdataByte = getGasPerPubdataByteFromMeta(metaPacked);
        meta.shardId = getShardIdFromMeta(metaPacked);
        meta.callerShardId = getCallerShardIdFromMeta(metaPacked);
        meta.codeShardId = getCodeShardIdFromMeta(metaPacked);
    }

    /// @notice Returns the call flags for the current call.
    /// @return callFlags The bitmask of the callflags.
    /// @dev Call flags is the value of the first register
    /// at the start of the call.
    /// @dev The zero bit of the callFlags indicates whether the call is
    /// a constructor call. The first bit of the callFlags indicates whether
    /// the call is a system one.
    function getCallFlags() internal view returns (uint256 callFlags) {
        address callAddr = CALLFLAGS_CALL_ADDRESS;
        assembly {
            callFlags := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Returns the current calldata pointer.
    /// @return ptr The current calldata pointer.
    /// @dev NOTE: This file is just an integer and it can not be used
    /// to forward the calldata to the next calls in any way.
    function getCalldataPtr() internal view returns (uint256 ptr) {
        address callAddr = PTR_CALLDATA_CALL_ADDRESS;
        assembly {
            ptr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Returns the N-th extraAbiParam for the current call.
    /// @return extraAbiData The value of the N-th extraAbiParam for this call.
    /// @dev It is equal to the value of the (N+2)-th register
    /// at the start of the call.
    function getExtraAbiData(uint256 index) internal view returns (uint256 extraAbiData) {
        require(index < 10, "There are only 10 accessible registers");

        address callAddr = GET_EXTRA_ABI_DATA_ADDRESS;
        assembly {
            extraAbiData := staticcall(index, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Retuns whether the current call is a system call.
    /// @return `true` or `false` based on whether the current call is a system call.
    function isSystemCall() internal view returns (bool) {
        uint256 callFlags = getCallFlags();
        // When the system call is passed, the 2-bit it set to 1
        return (callFlags & 2) != 0;
    }

    /// @notice Returns whether the address is a system contract.
    /// @param _address The address to test
    /// @return `true` or `false` based on whether the `_address` is a system contract.
    function isSystemContract(address _address) internal pure returns (bool) {
        return uint160(_address) <= uint160(MAX_SYSTEM_CONTRACT_ADDRESS);
    }
}

/// @dev Solidity does not allow exporting modifiers via libraries, so
/// the only way to do reuse modifiers is to have a base contract
abstract contract ISystemContract {
    /// @notice Modifier that makes sure that the method
    /// can only be called via a system call.
    modifier onlySystemCall() {
        require(
            SystemContractHelper.isSystemCall() || SystemContractHelper.isSystemContract(msg.sender),
            "This method require system call flag"
        );
        _;
    }
}

File 5 of 24 : Constants.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./interfaces/IAccountCodeStorage.sol";
import "./interfaces/INonceHolder.sol";
import "./interfaces/IContractDeployer.sol";
import "./interfaces/IKnownCodesStorage.sol";
import "./interfaces/IImmutableSimulator.sol";
import "./interfaces/IEthToken.sol";
import "./interfaces/IL1Messenger.sol";
import "./interfaces/ISystemContext.sol";
import "./interfaces/IBytecodeCompressor.sol";
import "./BootloaderUtilities.sol";

/// @dev All the system contracts introduced by zkSync have their addresses
/// started from 2^15 in order to avoid collision with Ethereum precompiles.
uint160 constant SYSTEM_CONTRACTS_OFFSET = 0x8000; // 2^15

/// @dev All the system contracts must be located in the kernel space,
/// i.e. their addresses must be below 2^16.
uint160 constant MAX_SYSTEM_CONTRACT_ADDRESS = 0xffff; // 2^16 - 1

address constant ECRECOVER_SYSTEM_CONTRACT = address(0x01);
address constant SHA256_SYSTEM_CONTRACT = address(0x02);

/// @dev The current maximum deployed precompile address.
/// Note: currently only two precompiles are deployed:
/// 0x01 - ecrecover
/// 0x02 - sha256
/// Important! So the constant should be updated if more precompiles are deployed.
uint256 constant CURRENT_MAX_PRECOMPILE_ADDRESS = uint256(uint160(SHA256_SYSTEM_CONTRACT));

address payable constant BOOTLOADER_FORMAL_ADDRESS = payable(address(SYSTEM_CONTRACTS_OFFSET + 0x01));
IAccountCodeStorage constant ACCOUNT_CODE_STORAGE_SYSTEM_CONTRACT = IAccountCodeStorage(
    address(SYSTEM_CONTRACTS_OFFSET + 0x02)
);
INonceHolder constant NONCE_HOLDER_SYSTEM_CONTRACT = INonceHolder(address(SYSTEM_CONTRACTS_OFFSET + 0x03));
IKnownCodesStorage constant KNOWN_CODE_STORAGE_CONTRACT = IKnownCodesStorage(address(SYSTEM_CONTRACTS_OFFSET + 0x04));
IImmutableSimulator constant IMMUTABLE_SIMULATOR_SYSTEM_CONTRACT = IImmutableSimulator(
    address(SYSTEM_CONTRACTS_OFFSET + 0x05)
);
IContractDeployer constant DEPLOYER_SYSTEM_CONTRACT = IContractDeployer(address(SYSTEM_CONTRACTS_OFFSET + 0x06));

// A contract that is allowed to deploy any codehash
// on any address. To be used only during an upgrade.
address constant FORCE_DEPLOYER = address(SYSTEM_CONTRACTS_OFFSET + 0x07);
IL1Messenger constant L1_MESSENGER_CONTRACT = IL1Messenger(address(SYSTEM_CONTRACTS_OFFSET + 0x08));
address constant MSG_VALUE_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x09);

IEthToken constant ETH_TOKEN_SYSTEM_CONTRACT = IEthToken(address(SYSTEM_CONTRACTS_OFFSET + 0x0a));

address constant KECCAK256_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x10);

ISystemContext constant SYSTEM_CONTEXT_CONTRACT = ISystemContext(payable(address(SYSTEM_CONTRACTS_OFFSET + 0x0b)));

BootloaderUtilities constant BOOTLOADER_UTILITIES = BootloaderUtilities(address(SYSTEM_CONTRACTS_OFFSET + 0x0c));

address constant EVENT_WRITER_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x0d);

IBytecodeCompressor constant BYTECODE_COMPRESSOR_CONTRACT = IBytecodeCompressor(
    address(SYSTEM_CONTRACTS_OFFSET + 0x0e)
);

/// @dev If the bitwise AND of the extraAbi[2] param when calling the MSG_VALUE_SIMULATOR
/// is non-zero, the call will be assumed to be a system one.
uint256 constant MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT = 1;

/// @dev The maximal msg.value that context can have
uint256 constant MAX_MSG_VALUE = 2 ** 128 - 1;

/// @dev Prefix used during derivation of account addresses using CREATE2
/// @dev keccak256("zksyncCreate2")
bytes32 constant CREATE2_PREFIX = 0x2020dba91b30cc0006188af794c2fb30dd8520db7e2c088b7fc7c103c00ca494;
/// @dev Prefix used during derivation of account addresses using CREATE
/// @dev keccak256("zksyncCreate")
bytes32 constant CREATE_PREFIX = 0x63bae3a9951d38e8a3fbb7b70909afc1200610fc5bc55ade242f815974674f23;

File 6 of 24 : SystemContractsCaller.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8;

import {MSG_VALUE_SYSTEM_CONTRACT, MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT} from "../Constants.sol";
import "./Utils.sol";

// Addresses used for the compiler to be replaced with the
// zkSync-specific opcodes during the compilation.
// IMPORTANT: these are just compile-time constants and are used
// only if used in-place by Yul optimizer.
address constant TO_L1_CALL_ADDRESS = address((1 << 16) - 1);
address constant CODE_ADDRESS_CALL_ADDRESS = address((1 << 16) - 2);
address constant PRECOMPILE_CALL_ADDRESS = address((1 << 16) - 3);
address constant META_CALL_ADDRESS = address((1 << 16) - 4);
address constant MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 5);
address constant SYSTEM_MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 6);
address constant MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 7);
address constant SYSTEM_MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 8);
address constant RAW_FAR_CALL_CALL_ADDRESS = address((1 << 16) - 9);
address constant RAW_FAR_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 10);
address constant SYSTEM_CALL_CALL_ADDRESS = address((1 << 16) - 11);
address constant SYSTEM_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 12);
address constant SET_CONTEXT_VALUE_CALL_ADDRESS = address((1 << 16) - 13);
address constant SET_PUBDATA_PRICE_CALL_ADDRESS = address((1 << 16) - 14);
address constant INCREMENT_TX_COUNTER_CALL_ADDRESS = address((1 << 16) - 15);
address constant PTR_CALLDATA_CALL_ADDRESS = address((1 << 16) - 16);
address constant CALLFLAGS_CALL_ADDRESS = address((1 << 16) - 17);
address constant PTR_RETURNDATA_CALL_ADDRESS = address((1 << 16) - 18);
address constant EVENT_INITIALIZE_ADDRESS = address((1 << 16) - 19);
address constant EVENT_WRITE_ADDRESS = address((1 << 16) - 20);
address constant LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 21);
address constant LOAD_LATEST_RETURNDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 22);
address constant PTR_ADD_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 23);
address constant PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 24);
address constant PTR_PACK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 25);
address constant MULTIPLICATION_HIGH_ADDRESS = address((1 << 16) - 26);
address constant GET_EXTRA_ABI_DATA_ADDRESS = address((1 << 16) - 27);

// All the offsets are in bits
uint256 constant META_GAS_PER_PUBDATA_BYTE_OFFSET = 0 * 8;
uint256 constant META_HEAP_SIZE_OFFSET = 8 * 8;
uint256 constant META_AUX_HEAP_SIZE_OFFSET = 12 * 8;
uint256 constant META_SHARD_ID_OFFSET = 28 * 8;
uint256 constant META_CALLER_SHARD_ID_OFFSET = 29 * 8;
uint256 constant META_CODE_SHARD_ID_OFFSET = 30 * 8;

/// @notice The way to forward the calldata:
/// - Use the current heap (i.e. the same as on EVM).
/// - Use the auxiliary heap.
/// - Forward via a pointer
/// @dev Note, that currently, users do not have access to the auxiliary
/// heap and so the only type of forwarding that will be used by the users
/// are UseHeap and ForwardFatPointer for forwarding a slice of the current calldata
/// to the next call.
enum CalldataForwardingMode {
    UseHeap,
    ForwardFatPointer,
    UseAuxHeap
}

/**
 * @author Matter Labs
 * @notice A library that allows calling contracts with the `isSystem` flag.
 * @dev It is needed to call ContractDeployer and NonceHolder.
 */
library SystemContractsCaller {
    /// @notice Makes a call with the `isSystem` flag.
    /// @param gasLimit The gas limit for the call.
    /// @param to The address to call.
    /// @param value The value to pass with the transaction.
    /// @param data The calldata.
    /// @return success Whether the transaction has been successful.
    /// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
    function systemCall(uint32 gasLimit, address to, uint256 value, bytes memory data) internal returns (bool success) {
        address callAddr = SYSTEM_CALL_CALL_ADDRESS;

        uint32 dataStart;
        assembly {
            dataStart := add(data, 0x20)
        }
        uint32 dataLength = uint32(Utils.safeCastToU32(data.length));

        uint256 farCallAbi = SystemContractsCaller.getFarCallABI(
            0,
            0,
            dataStart,
            dataLength,
            gasLimit,
            // Only rollup is supported for now
            0,
            CalldataForwardingMode.UseHeap,
            false,
            true
        );

        if (value == 0) {
            // Doing the system call directly
            assembly {
                success := call(to, callAddr, 0, 0, farCallAbi, 0, 0)
            }
        } else {
            address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT;
            // We need to supply the mask to the MsgValueSimulator to denote
            // that the call should be a system one.
            uint256 forwardMask = MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT;

            assembly {
                success := call(msgValueSimulator, callAddr, value, to, farCallAbi, forwardMask, 0)
            }
        }
    }

    /// @notice Makes a call with the `isSystem` flag.
    /// @param gasLimit The gas limit for the call.
    /// @param to The address to call.
    /// @param value The value to pass with the transaction.
    /// @param data The calldata.
    /// @return success Whether the transaction has been successful.
    /// @return returnData The returndata of the transaction (revert reason in case the transaction has failed).
    /// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
    function systemCallWithReturndata(
        uint32 gasLimit,
        address to,
        uint128 value,
        bytes memory data
    ) internal returns (bool success, bytes memory returnData) {
        success = systemCall(gasLimit, to, value, data);

        uint256 size;
        assembly {
            size := returndatasize()
        }

        returnData = new bytes(size);
        assembly {
            returndatacopy(add(returnData, 0x20), 0, size)
        }
    }

    /// @notice Makes a call with the `isSystem` flag.
    /// @param gasLimit The gas limit for the call.
    /// @param to The address to call.
    /// @param value The value to pass with the transaction.
    /// @param data The calldata.
    /// @return returnData The returndata of the transaction. In case the transaction reverts, the error
    /// bubbles up to the parent frame.
    /// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
    function systemCallWithPropagatedRevert(
        uint32 gasLimit,
        address to,
        uint128 value,
        bytes memory data
    ) internal returns (bytes memory returnData) {
        bool success;
        (success, returnData) = systemCallWithReturndata(gasLimit, to, value, data);

        if (!success) {
            assembly {
                let size := mload(returnData)
                revert(add(returnData, 0x20), size)
            }
        }
    }

    /// @notice Calculates the packed representation of the FarCallABI.
    /// @param dataOffset Calldata offset in memory. Provide 0 unless using custom pointer.
    /// @param memoryPage Memory page to use. Provide 0 unless using custom pointer.
    /// @param dataStart The start of the calldata slice. Provide the offset in memory
    /// if not using custom pointer.
    /// @param dataLength The calldata length. Provide the length of the calldata in bytes
    /// unless using custom pointer.
    /// @param gasPassed The gas to pass with the call.
    /// @param shardId Of the account to call. Currently only 0 is supported.
    /// @param forwardingMode The forwarding mode to use:
    /// - provide CalldataForwardingMode.UseHeap when using your current memory
    /// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer.
    /// @param isConstructorCall Whether the call will be a call to the constructor
    /// (ignored when the caller is not a system contract).
    /// @param isSystemCall Whether the call will have the `isSystem` flag.
    /// @return farCallAbi The far call ABI.
    /// @dev The `FarCallABI` has the following structure:
    /// pub struct FarCallABI {
    ///     pub memory_quasi_fat_pointer: FatPointer,
    ///     pub gas_passed: u32,
    ///     pub shard_id: u8,
    ///     pub forwarding_mode: FarCallForwardPageType,
    ///     pub constructor_call: bool,
    ///     pub to_system: bool,
    /// }
    ///
    /// The FatPointer struct:
    ///
    /// pub struct FatPointer {
    ///     pub offset: u32, // offset relative to `start`
    ///     pub memory_page: u32, // memory page where slice is located
    ///     pub start: u32, // absolute start of the slice
    ///     pub length: u32, // length of the slice
    /// }
    ///
    /// @dev Note, that the actual layout is the following:
    ///
    /// [0..32) bits -- the calldata offset
    /// [32..64) bits -- the memory page to use. Can be left blank in most of the cases.
    /// [64..96) bits -- the absolute start of the slice
    /// [96..128) bits -- the length of the slice.
    /// [128..192) bits -- empty bits.
    /// [192..224) bits -- gasPassed.
    /// [224..232) bits -- forwarding_mode
    /// [232..240) bits -- shard id.
    /// [240..248) bits -- constructor call flag
    /// [248..256] bits -- system call flag
    function getFarCallABI(
        uint32 dataOffset,
        uint32 memoryPage,
        uint32 dataStart,
        uint32 dataLength,
        uint32 gasPassed,
        uint8 shardId,
        CalldataForwardingMode forwardingMode,
        bool isConstructorCall,
        bool isSystemCall
    ) internal pure returns (uint256 farCallAbi) {
        // Fill in the call parameter fields
        farCallAbi = getFarCallABIWithEmptyFatPointer(
            gasPassed,
            shardId,
            forwardingMode,
            isConstructorCall,
            isSystemCall
        );
        // Fill in the fat pointer fields
        farCallAbi |= dataOffset;
        farCallAbi |= (uint256(memoryPage) << 32);
        farCallAbi |= (uint256(dataStart) << 64);
        farCallAbi |= (uint256(dataLength) << 96);
    }

    /// @notice Calculates the packed representation of the FarCallABI with zero fat pointer fields.
    /// @param gasPassed The gas to pass with the call.
    /// @param shardId Of the account to call. Currently only 0 is supported.
    /// @param forwardingMode The forwarding mode to use:
    /// - provide CalldataForwardingMode.UseHeap when using your current memory
    /// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer.
    /// @param isConstructorCall Whether the call will be a call to the constructor
    /// (ignored when the caller is not a system contract).
    /// @param isSystemCall Whether the call will have the `isSystem` flag.
    /// @return farCallAbiWithEmptyFatPtr The far call ABI with zero fat pointer fields.
    function getFarCallABIWithEmptyFatPointer(
        uint32 gasPassed,
        uint8 shardId,
        CalldataForwardingMode forwardingMode,
        bool isConstructorCall,
        bool isSystemCall
    ) internal pure returns (uint256 farCallAbiWithEmptyFatPtr) {
        farCallAbiWithEmptyFatPtr |= (uint256(gasPassed) << 192);
        farCallAbiWithEmptyFatPtr |= (uint256(forwardingMode) << 224);
        farCallAbiWithEmptyFatPtr |= (uint256(shardId) << 232);
        if (isConstructorCall) {
            farCallAbiWithEmptyFatPtr |= (1 << 240);
        }
        if (isSystemCall) {
            farCallAbiWithEmptyFatPtr |= (1 << 248);
        }
    }
}

File 7 of 24 : INonceHolder.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @author Matter Labs
 * @dev Interface of the nonce holder contract -- a contract used by the system to ensure
 * that there is always a unique identifier for a transaction with a particular account (we call it nonce).
 * In other words, the pair of (address, nonce) should always be unique.
 * @dev Custom accounts should use methods of this contract to store nonces or other possible unique identifiers
 * for the transaction.
 */
interface INonceHolder {
    event ValueSetUnderNonce(address indexed accountAddress, uint256 indexed key, uint256 value);

    /// @dev Returns the current minimal nonce for account.
    function getMinNonce(address _address) external view returns (uint256);

    /// @dev Returns the raw version of the current minimal nonce
    /// (equal to minNonce + 2^128 * deployment nonce).
    function getRawNonce(address _address) external view returns (uint256);

    /// @dev Increases the minimal nonce for the msg.sender.
    function increaseMinNonce(uint256 _value) external returns (uint256);

    /// @dev Sets the nonce value `key` as used.
    function setValueUnderNonce(uint256 _key, uint256 _value) external;

    /// @dev Gets the value stored inside a custom nonce.
    function getValueUnderNonce(uint256 _key) external view returns (uint256);

    /// @dev A convenience method to increment the minimal nonce if it is equal
    /// to the `_expectedNonce`.
    function incrementMinNonceIfEquals(uint256 _expectedNonce) external;

    /// @dev Returns the deployment nonce for the accounts used for CREATE opcode.
    function getDeploymentNonce(address _address) external view returns (uint256);

    /// @dev Increments the deployment nonce for the account and returns the previous one.
    function incrementDeploymentNonce(address _address) external returns (uint256);

    /// @dev Determines whether a certain nonce has been already used for an account.
    function validateNonceUsage(address _address, uint256 _key, bool _shouldBeUsed) external view;

    /// @dev Returns whether a nonce has been used for an account.
    function isNonceUsed(address _address, uint256 _nonce) external view returns (bool);
}

File 8 of 24 : IAccountCodeStorage.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface IAccountCodeStorage {
    function storeAccountConstructingCodeHash(address _address, bytes32 _hash) external;

    function storeAccountConstructedCodeHash(address _address, bytes32 _hash) external;

    function markAccountCodeHashAsConstructed(address _address) external;

    function getRawCodeHash(address _address) external view returns (bytes32 codeHash);

    function getCodeHash(uint256 _input) external view returns (bytes32 codeHash);

    function getCodeSize(uint256 _input) external view returns (uint256 codeSize);
}

File 9 of 24 : IContractDeployer.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface IContractDeployer {
    /// @notice Defines the version of the account abstraction protocol
    /// that a contract claims to follow.
    /// - `None` means that the account is just a contract and it should never be interacted
    /// with as a custom account
    /// - `Version1` means that the account follows the first version of the account abstraction protocol
    enum AccountAbstractionVersion {
        None,
        Version1
    }

    /// @notice Defines the nonce ordering used by the account
    /// - `Sequential` means that it is expected that the nonces are monotonic and increment by 1
    /// at a time (the same as EOAs).
    /// - `Arbitrary` means that the nonces for the accounts can be arbitrary. The operator
    /// should serve the transactions from such an account on a first-come-first-serve basis.
    /// @dev This ordering is more of a suggestion to the operator on how the AA expects its transactions
    /// to be processed and is not considered as a system invariant.
    enum AccountNonceOrdering {
        Sequential,
        Arbitrary
    }

    struct AccountInfo {
        AccountAbstractionVersion supportedAAVersion;
        AccountNonceOrdering nonceOrdering;
    }

    event ContractDeployed(
        address indexed deployerAddress,
        bytes32 indexed bytecodeHash,
        address indexed contractAddress
    );

    event AccountNonceOrderingUpdated(address indexed accountAddress, AccountNonceOrdering nonceOrdering);

    event AccountVersionUpdated(address indexed accountAddress, AccountAbstractionVersion aaVersion);

    function getNewAddressCreate2(
        address _sender,
        bytes32 _bytecodeHash,
        bytes32 _salt,
        bytes calldata _input
    ) external view returns (address newAddress);

    function getNewAddressCreate(address _sender, uint256 _senderNonce) external pure returns (address newAddress);

    function create2(
        bytes32 _salt,
        bytes32 _bytecodeHash,
        bytes calldata _input
    ) external payable returns (address newAddress);

    function create2Account(
        bytes32 _salt,
        bytes32 _bytecodeHash,
        bytes calldata _input,
        AccountAbstractionVersion _aaVersion
    ) external payable returns (address newAddress);

    /// @dev While the `_salt` parameter is not used anywhere here,
    /// it is still needed for consistency between `create` and
    /// `create2` functions (required by the compiler).
    function create(
        bytes32 _salt,
        bytes32 _bytecodeHash,
        bytes calldata _input
    ) external payable returns (address newAddress);

    /// @dev While `_salt` is never used here, we leave it here as a parameter
    /// for the consistency with the `create` function.
    function createAccount(
        bytes32 _salt,
        bytes32 _bytecodeHash,
        bytes calldata _input,
        AccountAbstractionVersion _aaVersion
    ) external payable returns (address newAddress);

    /// @notice Returns the information about a certain AA.
    function getAccountInfo(address _address) external view returns (AccountInfo memory info);

    /// @notice Can be called by an account to update its account version
    function updateAccountVersion(AccountAbstractionVersion _version) external;

    /// @notice Can be called by an account to update its nonce ordering
    function updateNonceOrdering(AccountNonceOrdering _nonceOrdering) external;
}

File 10 of 24 : IEthToken.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface IEthToken {
    function balanceOf(uint256) external view returns (uint256);

    function transferFromTo(address _from, address _to, uint256 _amount) external;

    function totalSupply() external view returns (uint256);

    function name() external pure returns (string memory);

    function symbol() external pure returns (string memory);

    function decimals() external pure returns (uint8);

    function mint(address _account, uint256 _amount) external;

    function withdraw(address _l1Receiver) external payable;

    event Mint(address indexed account, uint256 amount);

    event Transfer(address indexed from, address indexed to, uint256 value);

    event Withdrawal(address indexed _l2Sender, address indexed _l1Receiver, uint256 _amount);
}

File 11 of 24 : IL1Messenger.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface IL1Messenger {
    // Possibly in the future we will be able to track the messages sent to L1 with
    // some hooks in the VM. For now, it is much easier to track them with L2 events.
    event L1MessageSent(address indexed _sender, bytes32 indexed _hash, bytes _message);

    function sendToL1(bytes memory _message) external returns (bytes32);
}

File 12 of 24 : IImmutableSimulator.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

struct ImmutableData {
    uint256 index;
    bytes32 value;
}

interface IImmutableSimulator {
    function getImmutable(address _dest, uint256 _index) external view returns (bytes32);

    function setImmutables(address _dest, ImmutableData[] calldata _immutables) external;
}

File 13 of 24 : ISystemContext.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @author Matter Labs
 * @notice Contract that stores some of the context variables, that may be either
 * block-scoped, tx-scoped or system-wide.
 */
interface ISystemContext {
    function chainId() external view returns (uint256);

    function origin() external view returns (address);

    function gasPrice() external view returns (uint256);

    function blockGasLimit() external view returns (uint256);

    function coinbase() external view returns (address);

    function difficulty() external view returns (uint256);

    function baseFee() external view returns (uint256);

    function blockHash(uint256 _block) external view returns (bytes32);

    function getBlockHashEVM(uint256 _block) external view returns (bytes32);

    function getBlockNumberAndTimestamp() external view returns (uint256 blockNumber, uint256 blockTimestamp);

    // Note, that for now, the implementation of the bootloader allows this variables to
    // be incremented multiple times inside a block, so it should not relied upon right now.
    function getBlockNumber() external view returns (uint256);

    function getBlockTimestamp() external view returns (uint256);
}

File 14 of 24 : BootloaderUtilities.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./interfaces/IBootloaderUtilities.sol";
import "./libraries/TransactionHelper.sol";
import "./libraries/RLPEncoder.sol";
import "./libraries/EfficientCall.sol";

/**
 * @author Matter Labs
 * @notice A contract that provides some utility methods for the bootloader
 * that is very hard to write in Yul.
 */
contract BootloaderUtilities is IBootloaderUtilities {
    using TransactionHelper for *;

    /// @notice Calculates the canonical transaction hash and the recommended transaction hash.
    /// @param _transaction The transaction.
    /// @return txHash and signedTxHash of the transaction, i.e. the transaction hash to be used in the explorer and commits to all
    /// the fields of the transaction and the recommended hash to be signed for this transaction.
    /// @dev txHash must be unique for all transactions.
    function getTransactionHashes(
        Transaction calldata _transaction
    ) external view override returns (bytes32 txHash, bytes32 signedTxHash) {
        signedTxHash = _transaction.encodeHash();
        if (_transaction.txType == EIP_712_TX_TYPE) {
            txHash = keccak256(bytes.concat(signedTxHash, EfficientCall.keccak(_transaction.signature)));
        } else if (_transaction.txType == LEGACY_TX_TYPE) {
            txHash = encodeLegacyTransactionHash(_transaction);
        } else if (_transaction.txType == EIP_1559_TX_TYPE) {
            txHash = encodeEIP1559TransactionHash(_transaction);
        } else if (_transaction.txType == EIP_2930_TX_TYPE) {
            txHash = encodeEIP2930TransactionHash(_transaction);
        } else {
            revert("Unsupported tx type");
        }
    }

    /// @notice Calculates the hash for a legacy transaction.
    /// @param _transaction The legacy transaction.
    /// @return txHash The hash of the transaction.
    function encodeLegacyTransactionHash(Transaction calldata _transaction) internal view returns (bytes32 txHash) {
        // Hash of legacy transactions are encoded as one of the:
        // - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0)
        // - RLP(nonce, gasPrice, gasLimit, to, value, data)
        //
        // In this RLP encoding, only the first one above list appears, so we encode each element
        // inside list and then concatenate the length of all elements with them.

        bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
        // Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error".
        bytes memory encodedGasParam;
        {
            bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
            bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
            encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit);
        }

        bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
        bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
        // Encode only the length of the transaction data, and not the data itself,
        // so as not to copy to memory a potentially huge transaction data twice.
        bytes memory encodedDataLength;
        {
            // Safe cast, because the length of the transaction data can't be so large.
            uint64 txDataLen = uint64(_transaction.data.length);
            if (txDataLen != 1) {
                // If the length is not equal to one, then only using the length can it be encoded definitely.
                encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
            } else if (_transaction.data[0] >= 0x80) {
                // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
                encodedDataLength = hex"81";
            }
            // Otherwise the length is not encoded at all.
        }

        bytes memory rEncoded;
        {
            uint256 rInt = uint256(bytes32(_transaction.signature[0:32]));
            rEncoded = RLPEncoder.encodeUint256(rInt);
        }
        bytes memory sEncoded;
        {
            uint256 sInt = uint256(bytes32(_transaction.signature[32:64]));
            sEncoded = RLPEncoder.encodeUint256(sInt);
        }
        bytes memory vEncoded;
        {
            uint256 vInt = uint256(uint8(_transaction.signature[64]));
            require(vInt == 27 || vInt == 28, "Invalid v value");

            // If the `chainId` is specified in the transaction, then the `v` value is encoded as
            // `35 + y + 2 * chainId == vInt + 8 + 2 * chainId`, where y - parity bit (see EIP-155).
            if (_transaction.reserved[0] != 0) {
                vInt += 8 + block.chainid * 2;
            }

            vEncoded = RLPEncoder.encodeUint256(vInt);
        }

        bytes memory encodedListLength;
        unchecked {
            uint256 listLength = encodedNonce.length +
                encodedGasParam.length +
                encodedTo.length +
                encodedValue.length +
                encodedDataLength.length +
                _transaction.data.length +
                rEncoded.length +
                sEncoded.length +
                vEncoded.length;

            // Safe cast, because the length of the list can't be so large.
            encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
        }

        return
            keccak256(
                bytes.concat(
                    encodedListLength,
                    encodedNonce,
                    encodedGasParam,
                    encodedTo,
                    encodedValue,
                    encodedDataLength,
                    _transaction.data,
                    vEncoded,
                    rEncoded,
                    sEncoded
                )
            );
    }

    /// @notice Calculates the hash for an EIP2930 transaction.
    /// @param _transaction The EIP2930 transaction.
    /// @return txHash The hash of the transaction.
    function encodeEIP2930TransactionHash(Transaction calldata _transaction) internal view returns (bytes32) {
        // Encode all fixed-length params to avoid "stack too deep error"
        bytes memory encodedFixedLengthParams;
        {
            bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
            bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
            bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
            bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
            bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
            bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
            encodedFixedLengthParams = bytes.concat(
                encodedChainId,
                encodedNonce,
                encodedGasPrice,
                encodedGasLimit,
                encodedTo,
                encodedValue
            );
        }

        // Encode only the length of the transaction data, and not the data itself,
        // so as not to copy to memory a potentially huge transaction data twice.
        bytes memory encodedDataLength;
        {
            // Safe cast, because the length of the transaction data can't be so large.
            uint64 txDataLen = uint64(_transaction.data.length);
            if (txDataLen != 1) {
                // If the length is not equal to one, then only using the length can it be encoded definitely.
                encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
            } else if (_transaction.data[0] >= 0x80) {
                // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
                encodedDataLength = hex"81";
            }
            // Otherwise the length is not encoded at all.
        }

        // On zkSync, access lists are always zero length (at least for now).
        bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);

        bytes memory rEncoded;
        {
            uint256 rInt = uint256(bytes32(_transaction.signature[0:32]));
            rEncoded = RLPEncoder.encodeUint256(rInt);
        }
        bytes memory sEncoded;
        {
            uint256 sInt = uint256(bytes32(_transaction.signature[32:64]));
            sEncoded = RLPEncoder.encodeUint256(sInt);
        }
        bytes memory vEncoded;
        {
            uint256 vInt = uint256(uint8(_transaction.signature[64]));
            require(vInt == 27 || vInt == 28, "Invalid v value");

            vEncoded = RLPEncoder.encodeUint256(vInt - 27);
        }

        bytes memory encodedListLength;
        unchecked {
            uint256 listLength = encodedFixedLengthParams.length +
                encodedDataLength.length +
                _transaction.data.length +
                encodedAccessListLength.length +
                rEncoded.length +
                sEncoded.length +
                vEncoded.length;

            // Safe cast, because the length of the list can't be so large.
            encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
        }

        return
            keccak256(
                bytes.concat(
                    "\x01",
                    encodedListLength,
                    encodedFixedLengthParams,
                    encodedDataLength,
                    _transaction.data,
                    encodedAccessListLength,
                    vEncoded,
                    rEncoded,
                    sEncoded
                )
            );
    }

    /// @notice Calculates the hash for an EIP1559 transaction.
    /// @param _transaction The legacy transaction.
    /// @return txHash The hash of the transaction.
    function encodeEIP1559TransactionHash(Transaction calldata _transaction) internal view returns (bytes32) {
        // The formula for hash of EIP1559 transaction in the original proposal:
        // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md

        // Encode all fixed-length params to avoid "stack too deep error"
        bytes memory encodedFixedLengthParams;
        {
            bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
            bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
            bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas);
            bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
            bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
            bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
            bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
            encodedFixedLengthParams = bytes.concat(
                encodedChainId,
                encodedNonce,
                encodedMaxPriorityFeePerGas,
                encodedMaxFeePerGas,
                encodedGasLimit,
                encodedTo,
                encodedValue
            );
        }

        // Encode only the length of the transaction data, and not the data itself,
        // so as not to copy to memory a potentially huge transaction data twice.
        bytes memory encodedDataLength;
        {
            // Safe cast, because the length of the transaction data can't be so large.
            uint64 txDataLen = uint64(_transaction.data.length);
            if (txDataLen != 1) {
                // If the length is not equal to one, then only using the length can it be encoded definitely.
                encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
            } else if (_transaction.data[0] >= 0x80) {
                // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
                encodedDataLength = hex"81";
            }
            // Otherwise the length is not encoded at all.
        }

        // On zkSync, access lists are always zero length (at least for now).
        bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);

        bytes memory rEncoded;
        {
            uint256 rInt = uint256(bytes32(_transaction.signature[0:32]));
            rEncoded = RLPEncoder.encodeUint256(rInt);
        }
        bytes memory sEncoded;
        {
            uint256 sInt = uint256(bytes32(_transaction.signature[32:64]));
            sEncoded = RLPEncoder.encodeUint256(sInt);
        }
        bytes memory vEncoded;
        {
            uint256 vInt = uint256(uint8(_transaction.signature[64]));
            require(vInt == 27 || vInt == 28, "Invalid v value");

            vEncoded = RLPEncoder.encodeUint256(vInt - 27);
        }

        bytes memory encodedListLength;
        unchecked {
            uint256 listLength = encodedFixedLengthParams.length +
                encodedDataLength.length +
                _transaction.data.length +
                encodedAccessListLength.length +
                rEncoded.length +
                sEncoded.length +
                vEncoded.length;

            // Safe cast, because the length of the list can't be so large.
            encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
        }

        return
            keccak256(
                bytes.concat(
                    "\x02",
                    encodedListLength,
                    encodedFixedLengthParams,
                    encodedDataLength,
                    _transaction.data,
                    encodedAccessListLength,
                    vEncoded,
                    rEncoded,
                    sEncoded
                )
            );
    }
}

File 15 of 24 : IKnownCodesStorage.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface IKnownCodesStorage {
    event MarkedAsKnown(bytes32 indexed bytecodeHash, bool indexed sendBytecodeToL1);

    function markFactoryDeps(bool _shouldSendToL1, bytes32[] calldata _hashes) external;

    function markBytecodeAsPublished(
        bytes32 _bytecodeHash,
        bytes32 _l1PreimageHash,
        uint256 _l1PreimageBytesLen
    ) external;

    function getMarker(bytes32 _hash) external view returns (uint256);
}

File 16 of 24 : IBytecodeCompressor.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface IBytecodeCompressor {
    function publishCompressedBytecode(
        bytes calldata _bytecode,
        bytes calldata _rawCompressedData
    ) external payable returns (bytes32 bytecodeHash);
}

File 17 of 24 : IBootloaderUtilities.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "../libraries/TransactionHelper.sol";

interface IBootloaderUtilities {
    function getTransactionHashes(
        Transaction calldata _transaction
    ) external view returns (bytes32 txHash, bytes32 signedTxHash);
}

File 18 of 24 : TransactionHelper.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "../openzeppelin/token/ERC20/IERC20.sol";
import "../openzeppelin/token/ERC20/utils/SafeERC20.sol";

import "../interfaces/IPaymasterFlow.sol";
import "../interfaces/IContractDeployer.sol";
import {ETH_TOKEN_SYSTEM_CONTRACT, BOOTLOADER_FORMAL_ADDRESS} from "../Constants.sol";
import "./RLPEncoder.sol";
import "./EfficientCall.sol";

/// @dev The type id of zkSync's EIP-712-signed transaction.
uint8 constant EIP_712_TX_TYPE = 0x71;

/// @dev The type id of legacy transactions.
uint8 constant LEGACY_TX_TYPE = 0x0;
/// @dev The type id of legacy transactions.
uint8 constant EIP_2930_TX_TYPE = 0x01;
/// @dev The type id of EIP1559 transactions.
uint8 constant EIP_1559_TX_TYPE = 0x02;

/// @notice Structure used to represent zkSync transaction.
struct Transaction {
    // The type of the transaction.
    uint256 txType;
    // The caller.
    uint256 from;
    // The callee.
    uint256 to;
    // The gasLimit to pass with the transaction.
    // It has the same meaning as Ethereum's gasLimit.
    uint256 gasLimit;
    // The maximum amount of gas the user is willing to pay for a byte of pubdata.
    uint256 gasPerPubdataByteLimit;
    // The maximum fee per gas that the user is willing to pay.
    // It is akin to EIP1559's maxFeePerGas.
    uint256 maxFeePerGas;
    // The maximum priority fee per gas that the user is willing to pay.
    // It is akin to EIP1559's maxPriorityFeePerGas.
    uint256 maxPriorityFeePerGas;
    // The transaction's paymaster. If there is no paymaster, it is equal to 0.
    uint256 paymaster;
    // The nonce of the transaction.
    uint256 nonce;
    // The value to pass with the transaction.
    uint256 value;
    // In the future, we might want to add some
    // new fields to the struct. The `txData` struct
    // is to be passed to account and any changes to its structure
    // would mean a breaking change to these accounts. In order to prevent this,
    // we should keep some fields as "reserved".
    // It is also recommended that their length is fixed, since
    // it would allow easier proof integration (in case we will need
    // some special circuit for preprocessing transactions).
    uint256[4] reserved;
    // The transaction's calldata.
    bytes data;
    // The signature of the transaction.
    bytes signature;
    // The properly formatted hashes of bytecodes that must be published on L1
    // with the inclusion of this transaction. Note, that a bytecode has been published
    // before, the user won't pay fees for its republishing.
    bytes32[] factoryDeps;
    // The input to the paymaster.
    bytes paymasterInput;
    // Reserved dynamic type for the future use-case. Using it should be avoided,
    // But it is still here, just in case we want to enable some additional functionality.
    bytes reservedDynamic;
}

/**
 * @author Matter Labs
 * @notice Library is used to help custom accounts to work with common methods for the Transaction type.
 */
library TransactionHelper {
    using SafeERC20 for IERC20;

    /// @notice The EIP-712 typehash for the contract's domain
    bytes32 constant EIP712_DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,string version,uint256 chainId)");

    bytes32 constant EIP712_TRANSACTION_TYPE_HASH =
        keccak256(
            "Transaction(uint256 txType,uint256 from,uint256 to,uint256 gasLimit,uint256 gasPerPubdataByteLimit,uint256 maxFeePerGas,uint256 maxPriorityFeePerGas,uint256 paymaster,uint256 nonce,uint256 value,bytes data,bytes32[] factoryDeps,bytes paymasterInput)"
        );

    /// @notice Whether the token is Ethereum.
    /// @param _addr The address of the token
    /// @return `true` or `false` based on whether the token is Ether.
    /// @dev This method assumes that address is Ether either if the address is 0 (for convenience)
    /// or if the address is the address of the L2EthToken system contract.
    function isEthToken(uint256 _addr) internal pure returns (bool) {
        return _addr == uint256(uint160(address(ETH_TOKEN_SYSTEM_CONTRACT))) || _addr == 0;
    }

    /// @notice Calculate the suggested signed hash of the transaction,
    /// i.e. the hash that is signed by EOAs and is recommended to be signed by other accounts.
    function encodeHash(Transaction calldata _transaction) internal view returns (bytes32 resultHash) {
        if (_transaction.txType == LEGACY_TX_TYPE) {
            resultHash = _encodeHashLegacyTransaction(_transaction);
        } else if (_transaction.txType == EIP_712_TX_TYPE) {
            resultHash = _encodeHashEIP712Transaction(_transaction);
        } else if (_transaction.txType == EIP_1559_TX_TYPE) {
            resultHash = _encodeHashEIP1559Transaction(_transaction);
        } else if (_transaction.txType == EIP_2930_TX_TYPE) {
            resultHash = _encodeHashEIP2930Transaction(_transaction);
        } else {
            // Currently no other transaction types are supported.
            // Any new transaction types will be processed in a similar manner.
            revert("Encoding unsupported tx");
        }
    }

    /// @notice Encode hash of the zkSync native transaction type.
    /// @return keccak256 hash of the EIP-712 encoded representation of transaction
    function _encodeHashEIP712Transaction(Transaction calldata _transaction) private view returns (bytes32) {
        bytes32 structHash = keccak256(
            abi.encode(
                EIP712_TRANSACTION_TYPE_HASH,
                _transaction.txType,
                _transaction.from,
                _transaction.to,
                _transaction.gasLimit,
                _transaction.gasPerPubdataByteLimit,
                _transaction.maxFeePerGas,
                _transaction.maxPriorityFeePerGas,
                _transaction.paymaster,
                _transaction.nonce,
                _transaction.value,
                EfficientCall.keccak(_transaction.data),
                keccak256(abi.encodePacked(_transaction.factoryDeps)),
                EfficientCall.keccak(_transaction.paymasterInput)
            )
        );

        bytes32 domainSeparator = keccak256(
            abi.encode(EIP712_DOMAIN_TYPEHASH, keccak256("zkSync"), keccak256("2"), block.chainid)
        );

        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }

    /// @notice Encode hash of the legacy transaction type.
    /// @return keccak256 of the serialized RLP encoded representation of transaction
    function _encodeHashLegacyTransaction(Transaction calldata _transaction) private view returns (bytes32) {
        // Hash of legacy transactions are encoded as one of the:
        // - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0)
        // - RLP(nonce, gasPrice, gasLimit, to, value, data)
        //
        // In this RLP encoding, only the first one above list appears, so we encode each element
        // inside list and then concatenate the length of all elements with them.

        bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
        // Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error".
        bytes memory encodedGasParam;
        {
            bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
            bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
            encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit);
        }

        bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
        bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
        // Encode only the length of the transaction data, and not the data itself,
        // so as not to copy to memory a potentially huge transaction data twice.
        bytes memory encodedDataLength;
        {
            // Safe cast, because the length of the transaction data can't be so large.
            uint64 txDataLen = uint64(_transaction.data.length);
            if (txDataLen != 1) {
                // If the length is not equal to one, then only using the length can it be encoded definitely.
                encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
            } else if (_transaction.data[0] >= 0x80) {
                // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
                encodedDataLength = hex"81";
            }
            // Otherwise the length is not encoded at all.
        }

        // Encode `chainId` according to EIP-155, but only if the `chainId` is specified in the transaction.
        bytes memory encodedChainId;
        if (_transaction.reserved[0] != 0) {
            encodedChainId = bytes.concat(RLPEncoder.encodeUint256(block.chainid), hex"80_80");
        }

        bytes memory encodedListLength;
        unchecked {
            uint256 listLength = encodedNonce.length +
                encodedGasParam.length +
                encodedTo.length +
                encodedValue.length +
                encodedDataLength.length +
                _transaction.data.length +
                encodedChainId.length;

            // Safe cast, because the length of the list can't be so large.
            encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
        }

        return
            keccak256(
                bytes.concat(
                    encodedListLength,
                    encodedNonce,
                    encodedGasParam,
                    encodedTo,
                    encodedValue,
                    encodedDataLength,
                    _transaction.data,
                    encodedChainId
                )
            );
    }

    /// @notice Encode hash of the EIP2930 transaction type.
    /// @return keccak256 of the serialized RLP encoded representation of transaction
    function _encodeHashEIP2930Transaction(Transaction calldata _transaction) private view returns (bytes32) {
        // Hash of EIP2930 transactions is encoded the following way:
        // H(0x01 || RLP(chain_id, nonce, gas_price, gas_limit, destination, amount, data, access_list))
        //
        // Note, that on zkSync access lists are not supported and should always be empty.

        // Encode all fixed-length params to avoid "stack too deep error"
        bytes memory encodedFixedLengthParams;
        {
            bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
            bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
            bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
            bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
            bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
            bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
            encodedFixedLengthParams = bytes.concat(
                encodedChainId,
                encodedNonce,
                encodedGasPrice,
                encodedGasLimit,
                encodedTo,
                encodedValue
            );
        }

        // Encode only the length of the transaction data, and not the data itself,
        // so as not to copy to memory a potentially huge transaction data twice.
        bytes memory encodedDataLength;
        {
            // Safe cast, because the length of the transaction data can't be so large.
            uint64 txDataLen = uint64(_transaction.data.length);
            if (txDataLen != 1) {
                // If the length is not equal to one, then only using the length can it be encoded definitely.
                encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
            } else if (_transaction.data[0] >= 0x80) {
                // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
                encodedDataLength = hex"81";
            }
            // Otherwise the length is not encoded at all.
        }

        // On zkSync, access lists are always zero length (at least for now).
        bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);

        bytes memory encodedListLength;
        unchecked {
            uint256 listLength = encodedFixedLengthParams.length +
                encodedDataLength.length +
                _transaction.data.length +
                encodedAccessListLength.length;

            // Safe cast, because the length of the list can't be so large.
            encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
        }

        return
            keccak256(
                bytes.concat(
                    "\x01",
                    encodedListLength,
                    encodedFixedLengthParams,
                    encodedDataLength,
                    _transaction.data,
                    encodedAccessListLength
                )
            );
    }

    /// @notice Encode hash of the EIP1559 transaction type.
    /// @return keccak256 of the serialized RLP encoded representation of transaction
    function _encodeHashEIP1559Transaction(Transaction calldata _transaction) private view returns (bytes32) {
        // Hash of EIP1559 transactions is encoded the following way:
        // H(0x02 || RLP(chain_id, nonce, max_priority_fee_per_gas, max_fee_per_gas, gas_limit, destination, amount, data, access_list))
        //
        // Note, that on zkSync access lists are not supported and should always be empty.

        // Encode all fixed-length params to avoid "stack too deep error"
        bytes memory encodedFixedLengthParams;
        {
            bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
            bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
            bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas);
            bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
            bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
            bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
            bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
            encodedFixedLengthParams = bytes.concat(
                encodedChainId,
                encodedNonce,
                encodedMaxPriorityFeePerGas,
                encodedMaxFeePerGas,
                encodedGasLimit,
                encodedTo,
                encodedValue
            );
        }

        // Encode only the length of the transaction data, and not the data itself,
        // so as not to copy to memory a potentially huge transaction data twice.
        bytes memory encodedDataLength;
        {
            // Safe cast, because the length of the transaction data can't be so large.
            uint64 txDataLen = uint64(_transaction.data.length);
            if (txDataLen != 1) {
                // If the length is not equal to one, then only using the length can it be encoded definitely.
                encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
            } else if (_transaction.data[0] >= 0x80) {
                // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
                encodedDataLength = hex"81";
            }
            // Otherwise the length is not encoded at all.
        }

        // On zkSync, access lists are always zero length (at least for now).
        bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);

        bytes memory encodedListLength;
        unchecked {
            uint256 listLength = encodedFixedLengthParams.length +
                encodedDataLength.length +
                _transaction.data.length +
                encodedAccessListLength.length;

            // Safe cast, because the length of the list can't be so large.
            encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
        }

        return
            keccak256(
                bytes.concat(
                    "\x02",
                    encodedListLength,
                    encodedFixedLengthParams,
                    encodedDataLength,
                    _transaction.data,
                    encodedAccessListLength
                )
            );
    }

    /// @notice Processes the common paymaster flows, e.g. setting proper allowance
    /// for tokens, etc. For more information on the expected behavior, check out
    /// the "Paymaster flows" section in the documentation.
    function processPaymasterInput(Transaction calldata _transaction) internal {
        require(_transaction.paymasterInput.length >= 4, "The standard paymaster input must be at least 4 bytes long");

        bytes4 paymasterInputSelector = bytes4(_transaction.paymasterInput[0:4]);
        if (paymasterInputSelector == IPaymasterFlow.approvalBased.selector) {
            require(
                _transaction.paymasterInput.length >= 68,
                "The approvalBased paymaster input must be at least 68 bytes long"
            );

            // While the actual data consists of address, uint256 and bytes data,
            // the data is needed only for the paymaster, so we ignore it here for the sake of optimization
            (address token, uint256 minAllowance) = abi.decode(_transaction.paymasterInput[4:68], (address, uint256));
            address paymaster = address(uint160(_transaction.paymaster));

            uint256 currentAllowance = IERC20(token).allowance(address(this), paymaster);
            if (currentAllowance < minAllowance) {
                // Some tokens, e.g. USDT require that the allowance is firsty set to zero
                // and only then updated to the new value.

                IERC20(token).safeApprove(paymaster, 0);
                IERC20(token).safeApprove(paymaster, minAllowance);
            }
        } else if (paymasterInputSelector == IPaymasterFlow.general.selector) {
            // Do nothing. general(bytes) paymaster flow means that the paymaster must interpret these bytes on his own.
        } else {
            revert("Unsupported paymaster flow");
        }
    }

    /// @notice Pays the required fee for the transaction to the bootloader.
    /// @dev Currently it pays the maximum amount "_transaction.maxFeePerGas * _transaction.gasLimit",
    /// it will change in the future.
    function payToTheBootloader(Transaction calldata _transaction) internal returns (bool success) {
        address bootloaderAddr = BOOTLOADER_FORMAL_ADDRESS;
        uint256 amount = _transaction.maxFeePerGas * _transaction.gasLimit;

        assembly {
            success := call(gas(), bootloaderAddr, amount, 0, 0, 0, 0)
        }
    }

    // Returns the balance required to process the transaction.
    function totalRequiredBalance(Transaction calldata _transaction) internal pure returns (uint256 requiredBalance) {
        if (address(uint160(_transaction.paymaster)) != address(0)) {
            // Paymaster pays for the fee
            requiredBalance = _transaction.value;
        } else {
            // The user should have enough balance for both the fee and the value of the transaction
            requiredBalance = _transaction.maxFeePerGas * _transaction.gasLimit + _transaction.value;
        }
    }
}

File 19 of 24 : RLPEncoder.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

library RLPEncoder {
    function encodeAddress(address _val) internal pure returns (bytes memory encoded) {
        // The size is equal to 20 bytes of the address itself + 1 for encoding bytes length in RLP.
        encoded = new bytes(0x15);

        bytes20 shiftedVal = bytes20(_val);
        assembly {
            // In the first byte we write the encoded length as 0x80 + 0x14 == 0x94.
            mstore(add(encoded, 0x20), 0x9400000000000000000000000000000000000000000000000000000000000000)
            // Write address data without stripping zeros.
            mstore(add(encoded, 0x21), shiftedVal)
        }
    }

    function encodeUint256(uint256 _val) internal pure returns (bytes memory encoded) {
        unchecked {
            if (_val < 128) {
                encoded = new bytes(1);
                // Handle zero as a non-value, since stripping zeroes results in an empty byte array
                encoded[0] = (_val == 0) ? bytes1(uint8(128)) : bytes1(uint8(_val));
            } else {
                uint256 hbs = _highestByteSet(_val);

                encoded = new bytes(hbs + 2);
                encoded[0] = bytes1(uint8(hbs + 0x81));

                uint256 lbs = 31 - hbs;
                uint256 shiftedVal = _val << (lbs * 8);

                assembly {
                    mstore(add(encoded, 0x21), shiftedVal)
                }
            }
        }
    }

    /// @notice Encodes the size of bytes in RLP format.
    /// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported.
    /// NOTE: panics if the length is 1 since the length encoding is ambiguous in this case.
    function encodeNonSingleBytesLen(uint64 _len) internal pure returns (bytes memory) {
        assert(_len != 1);
        return _encodeLength(_len, 0x80);
    }

    /// @notice Encodes the size of list items in RLP format.
    /// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported.
    function encodeListLen(uint64 _len) internal pure returns (bytes memory) {
        return _encodeLength(_len, 0xc0);
    }

    function _encodeLength(uint64 _len, uint256 _offset) private pure returns (bytes memory encoded) {
        unchecked {
            if (_len < 56) {
                encoded = new bytes(1);
                encoded[0] = bytes1(uint8(_len + _offset));
            } else {
                uint256 hbs = _highestByteSet(uint256(_len));

                encoded = new bytes(hbs + 2);
                encoded[0] = bytes1(uint8(_offset + hbs + 56));

                uint256 lbs = 31 - hbs;
                uint256 shiftedVal = uint256(_len) << (lbs * 8);

                assembly {
                    mstore(add(encoded, 0x21), shiftedVal)
                }
            }
        }
    }

    /// @notice Computes the index of the highest byte set in number.
    /// @notice Uses little endian ordering (The least significant byte has index `0`).
    /// NOTE: returns `0` for `0`
    function _highestByteSet(uint256 _number) private pure returns (uint256 hbs) {
        unchecked {
            if (_number > type(uint128).max) {
                _number >>= 128;
                hbs += 16;
            }
            if (_number > type(uint64).max) {
                _number >>= 64;
                hbs += 8;
            }
            if (_number > type(uint32).max) {
                _number >>= 32;
                hbs += 4;
            }
            if (_number > type(uint16).max) {
                _number >>= 16;
                hbs += 2;
            }
            if (_number > type(uint8).max) {
                hbs += 1;
            }
        }
    }
}

File 20 of 24 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 21 of 24 : IPaymasterFlow.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @author Matter Labs
 * @dev The interface that is used for encoding/decoding of
 * different types of paymaster flows.
 * @notice This is NOT an interface to be implementated
 * by contracts. It is just used for encoding.
 */
interface IPaymasterFlow {
    function general(bytes calldata input) external;

    function approvalBased(address _token, uint256 _minAllowance, bytes calldata _innerInput) external;
}

File 22 of 24 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(
            token,
            abi.encodeWithSelector(token.transfer.selector, to, value)
        );
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(
            token,
            abi.encodeWithSelector(token.transferFrom.selector, from, to, value)
        );
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(
            token,
            abi.encodeWithSelector(token.approve.selector, spender, value)
        );
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(
            token,
            abi.encodeWithSelector(
                token.approve.selector,
                spender,
                newAllowance
            )
        );
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(
                oldAllowance >= value,
                "SafeERC20: decreased allowance below zero"
            );
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(
                token,
                abi.encodeWithSelector(
                    token.approve.selector,
                    spender,
                    newAllowance
                )
            );
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(
            nonceAfter == nonceBefore + 1,
            "SafeERC20: permit did not succeed"
        );
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(
            data,
            "SafeERC20: low-level call failed"
        );
        if (returndata.length > 0) {
            // Return data is optional
            require(
                abi.decode(returndata, (bool)),
                "SafeERC20: ERC20 operation did not succeed"
            );
        }
    }
}

File 23 of 24 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(
            address(this).balance >= amount,
            "Address: insufficient balance"
        );

        (bool success, ) = recipient.call{value: amount}("");
        require(
            success,
            "Address: unable to send value, recipient may have reverted"
        );
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data)
        internal
        returns (bytes memory)
    {
        return
            functionCallWithValue(
                target,
                data,
                0,
                "Address: low-level call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return
            functionCallWithValue(
                target,
                data,
                value,
                "Address: low-level call with value failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(
            address(this).balance >= value,
            "Address: insufficient balance for call"
        );
        (bool success, bytes memory returndata) = target.call{value: value}(
            data
        );
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data)
        internal
        view
        returns (bytes memory)
    {
        return
            functionStaticCall(
                target,
                data,
                "Address: low-level static call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data)
        internal
        returns (bytes memory)
    {
        return
            functionDelegateCall(
                target,
                data,
                "Address: low-level delegate call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage)
        private
        pure
    {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 24 of 24 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

Settings
{
  "evmVersion": "cancun",
  "optimizer": {
    "enabled": true,
    "mode": "3"
  },
  "outputSelection": {
    "*": {
      "*": [
        "abi"
      ]
    }
  },
  "detectMissingLibraries": false,
  "forceEVMLA": false,
  "enableEraVMExtensions": true,
  "libraries": {
    "contracts/libraries/StringUtils.sol": {
      "StringUtils": "0x7e390c46302Fb6D7f6C7b4e36937287eB678FBC0"
    }
  }
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"implementation","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"stateMutability":"payable","type":"fallback"}]

Deployed Bytecode

0x0010000000000002000000600310027000000024033001970001000000310355000000000031035500020000003103550003000000310355000400000031035500050000003103550006000000310355000700000031035500080000003103550009000000310355000a000000310355000b000000310355000c000000310355000d000000310355000e000000310355000f0000003103550000000100200190000000270000c13d0000008002000039000000400020043f0000002802000041000000000202041a000000000300041400000000001004060000002c0030009c0000005e0000413d0000002f01000041000000800010043f0000002001000039000000840010043f0000000801000039000000a40010043f0000003001000041000000c40010043f0000003101000041000000820000013d0000000002000416000000000002004b0000005c0000c13d0000001f0230003900000025022001970000008002200039000000400020043f0000001f0430018f00000026053001980000008002500039000000380000613d0000008006000039000000000701034f000000007807043c0000000006860436000000000026004b000000340000c13d000000000004004b000000450000613d000000000151034f0000000304400210000000000502043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f0000000000120435000000200030008c0000005c0000413d000000800500043d000000270050009c0000005c0000213d0000002801000041000000000051041b0000000001000414000000240010009c0000002401008041000000c00110021000000029011001c70000800d0200003900000002030000390000002a04000041008d00830000040f00000001002001900000005c0000613d0000002001000039000001000010044300000120000004430000002b010000410000008e0001042e00000000010000190000008f000104300000000001100400000000c0033002100000002d033001970000002e033001c700000000003103b500000000013103af0000002702200197008d00880000040f00000060051002700000001f0450018f0000002603500198000000700000613d000000000601034f0000000007000019000000006806043c0000000007870436000000000037004b0000006c0000c13d0000002405500197000000000004004b0000007e0000613d000000000131034f0000000304400210000000000603043300000000064601cf000000000646022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000161019f000000000013043500000060015002100000000100200190000000820000613d0000008e0001042e0000008f0001043000000086002104210000000102000039000000000001042d0000000002000019000000000001042d0000008b002104250000000102000039000000000001042d0000000002000019000000000001042d0000008d000004320000008e0001042e0000008f0001043000000000000000000000000000000000000000000000000000000000ffffffff00000000000000000000000000000000000000000000000000000001ffffffe000000000000000000000000000000000000000000000000000000000ffffffe0000000000000000000000000ffffffffffffffffffffffffffffffffffffffff360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc0200000000000000000000000000000000000000000000000000000000000000bc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b0000000200000000000000000000000000000040000001000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000ffffffff000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000008c379a0000000000000000000000000000000000000000000000000000000004f766572666c6f770000000000000000000000000000000000000000000000000000000000000000000000000000000000000064000000800000000000000000e357dba2ad5d7f6b3e05b646b5fb08021f856b792197ab567b564bb14d62ae24

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.