Source Code
Overview
ETH Balance
0.09997594965 ETH
Token Holdings
More Info
ContractCreator
Multichain Info
N/A
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Transfer | 6159788 | 10 days ago | IN | 0.1 ETH | 0.00000281 |
Latest 22 internal transactions
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
6221715 | 9 days ago | 0 ETH | ||||
6221715 | 9 days ago | 0.00001274 ETH | ||||
6221715 | 9 days ago | 0 ETH | ||||
6221715 | 9 days ago | 0 ETH | ||||
6221715 | 9 days ago | 0 ETH | ||||
6161688 | 10 days ago | 0 ETH | ||||
6161688 | 10 days ago | 0.00000675 ETH | ||||
6161688 | 10 days ago | 0 ETH | ||||
6161688 | 10 days ago | 0 ETH | ||||
6161688 | 10 days ago | 0 ETH | ||||
6161595 | 10 days ago | 0 ETH | ||||
6161595 | 10 days ago | 0.00000675 ETH | ||||
6161595 | 10 days ago | 0 ETH | ||||
6161595 | 10 days ago | 0 ETH | ||||
6161595 | 10 days ago | 0 ETH | ||||
6159941 | 10 days ago | 0 ETH | ||||
6159941 | 10 days ago | 0.00000769 ETH | ||||
6159941 | 10 days ago | 0 ETH | ||||
6159941 | 10 days ago | 0 ETH | ||||
6159941 | 10 days ago | 0 ETH | ||||
6159788 | 10 days ago | 0.1 ETH | ||||
6159752 | 10 days ago | Contract Creation | 0 ETH |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
ClaimPaymaster
Compiler Version
v0.8.24+commit.e11b9ed9
ZkSolc Version
v1.5.7
Optimization Enabled:
Yes with Mode 3
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {Transaction} from "@matterlabs/zksync-contracts/l2/system-contracts/libraries/TransactionHelper.sol"; import {IPaymaster, ExecutionResult, PAYMASTER_VALIDATION_SUCCESS_MAGIC} from "@matterlabs/zksync-contracts/l2/system-contracts/interfaces/IPaymaster.sol"; import {AbstractPenguClaim} from "./AbstractPenguClaim.sol"; import {BOOTLOADER_FORMAL_ADDRESS} from "@matterlabs/zksync-contracts/l2/system-contracts/Constants.sol"; /** * This Paymaster sponsors the gas for any user attempting to claim PENGU. */ contract ClaimPaymaster is IPaymaster { error OnlyDeployer(); error OnlyBootloader(); error MustBePenguClaim(); error MustCallClaim(); error WithdrawalFailed(); error BootloaderCallFailed(); address public immutable ABSTRACT_PENGU_CLAIM; address private immutable _deployer; constructor(address _abstractPenguClaim) { ABSTRACT_PENGU_CLAIM = _abstractPenguClaim; _deployer = msg.sender; } function validateAndPayForPaymasterTransaction( bytes32, bytes32, Transaction calldata _transaction ) external payable returns (bytes4 magic, bytes memory context) { if (msg.sender != BOOTLOADER_FORMAL_ADDRESS) { revert OnlyBootloader(); } if (address(uint160(_transaction.to)) != ABSTRACT_PENGU_CLAIM) { revert MustBePenguClaim(); } if ( bytes4(_transaction.data[0:4]) != AbstractPenguClaim.claim.selector ) { revert MustCallClaim(); } context = ""; magic = PAYMASTER_VALIDATION_SUCCESS_MAGIC; uint256 requiredETH = _transaction.gasLimit * _transaction.maxFeePerGas; (bool success, ) = BOOTLOADER_FORMAL_ADDRESS.call{value: requiredETH}( "" ); if (!success) { revert BootloaderCallFailed(); } } function postTransaction( bytes calldata _context, Transaction calldata _transaction, bytes32 _txHash, bytes32 _suggestedSignedHash, ExecutionResult _txResult, uint256 _maxRefundedGas ) external payable {} function withdraw() external { if (msg.sender != _deployer) { revert OnlyDeployer(); } (bool success, ) = _deployer.call{value: address(this).balance}(""); if (!success) { revert WithdrawalFailed(); } } receive() external payable {} }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; /** * @title Verifies signatures from Pudgy World and transfers tokens to correct recipients */ contract AbstractPenguClaim is Ownable { using ECDSA for bytes32; using MessageHashUtils for bytes32; // ========================================================= // Errors // ========================================================= error ZeroAddress(); error SignatureUsed(); error InvalidSignature(); // ========================================================= // Storage // ========================================================= // PENGU token on Abstract address public constant PENGU = 0x6060d7fa26Ae7BED2281e6b11207C5B58604cb98; // signer - this signer is only used for signing, so no potential for signature reuse address private signer; // tracks claims mapping(uint256 => bool) private uidClaimed; constructor(address _signer) payable Ownable(msg.sender) { if (_signer == address(0)) revert ZeroAddress(); signer = _signer; } // ========================================================= // Claim // ========================================================= function claim( uint256 uid, uint256 quantity, bytes calldata signature ) external { if ( !verify( getMessageHash(msg.sender, uid, quantity), signature, signer ) ) revert InvalidSignature(); if (uidClaimed[uid]) revert SignatureUsed(); uidClaimed[uid] = true; SafeERC20.safeTransfer(IERC20(PENGU), msg.sender, quantity); } /*============================================================== == Sig Verification == ==============================================================*/ function verify( bytes32 messageHash, bytes memory signature, address _signer ) public pure returns (bool) { return messageHash.toEthSignedMessageHash().recover(signature) == _signer; } function getMessageHash( address agw, uint256 uid, uint256 quantity ) public pure returns (bytes32) { return keccak256(abi.encodePacked(agw, uid, quantity)); } // ========================================================= // Only Owner // ========================================================= function setSigner(address _signer) external onlyOwner { if (_signer == address(0)) revert ZeroAddress(); signer = _signer; } function withdraw(address token, uint256 balance) external onlyOwner { SafeERC20.safeTransfer(IERC20(token), msg.sender, balance); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../openzeppelin/token/ERC20/IERC20.sol"; import "../openzeppelin/token/ERC20/utils/SafeERC20.sol"; import "../interfaces/IPaymasterFlow.sol"; import "../interfaces/IContractDeployer.sol"; import {ETH_TOKEN_SYSTEM_CONTRACT, BOOTLOADER_FORMAL_ADDRESS} from "../Constants.sol"; import "./RLPEncoder.sol"; import "./EfficientCall.sol"; /// @dev The type id of zkSync's EIP-712-signed transaction. uint8 constant EIP_712_TX_TYPE = 0x71; /// @dev The type id of legacy transactions. uint8 constant LEGACY_TX_TYPE = 0x0; /// @dev The type id of legacy transactions. uint8 constant EIP_2930_TX_TYPE = 0x01; /// @dev The type id of EIP1559 transactions. uint8 constant EIP_1559_TX_TYPE = 0x02; /// @notice Structure used to represent zkSync transaction. struct Transaction { // The type of the transaction. uint256 txType; // The caller. uint256 from; // The callee. uint256 to; // The gasLimit to pass with the transaction. // It has the same meaning as Ethereum's gasLimit. uint256 gasLimit; // The maximum amount of gas the user is willing to pay for a byte of pubdata. uint256 gasPerPubdataByteLimit; // The maximum fee per gas that the user is willing to pay. // It is akin to EIP1559's maxFeePerGas. uint256 maxFeePerGas; // The maximum priority fee per gas that the user is willing to pay. // It is akin to EIP1559's maxPriorityFeePerGas. uint256 maxPriorityFeePerGas; // The transaction's paymaster. If there is no paymaster, it is equal to 0. uint256 paymaster; // The nonce of the transaction. uint256 nonce; // The value to pass with the transaction. uint256 value; // In the future, we might want to add some // new fields to the struct. The `txData` struct // is to be passed to account and any changes to its structure // would mean a breaking change to these accounts. In order to prevent this, // we should keep some fields as "reserved". // It is also recommended that their length is fixed, since // it would allow easier proof integration (in case we will need // some special circuit for preprocessing transactions). uint256[4] reserved; // The transaction's calldata. bytes data; // The signature of the transaction. bytes signature; // The properly formatted hashes of bytecodes that must be published on L1 // with the inclusion of this transaction. Note, that a bytecode has been published // before, the user won't pay fees for its republishing. bytes32[] factoryDeps; // The input to the paymaster. bytes paymasterInput; // Reserved dynamic type for the future use-case. Using it should be avoided, // But it is still here, just in case we want to enable some additional functionality. bytes reservedDynamic; } /** * @author Matter Labs * @notice Library is used to help custom accounts to work with common methods for the Transaction type. */ library TransactionHelper { using SafeERC20 for IERC20; /// @notice The EIP-712 typehash for the contract's domain bytes32 constant EIP712_DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,string version,uint256 chainId)"); bytes32 constant EIP712_TRANSACTION_TYPE_HASH = keccak256( "Transaction(uint256 txType,uint256 from,uint256 to,uint256 gasLimit,uint256 gasPerPubdataByteLimit,uint256 maxFeePerGas,uint256 maxPriorityFeePerGas,uint256 paymaster,uint256 nonce,uint256 value,bytes data,bytes32[] factoryDeps,bytes paymasterInput)" ); /// @notice Whether the token is Ethereum. /// @param _addr The address of the token /// @return `true` or `false` based on whether the token is Ether. /// @dev This method assumes that address is Ether either if the address is 0 (for convenience) /// or if the address is the address of the L2EthToken system contract. function isEthToken(uint256 _addr) internal pure returns (bool) { return _addr == uint256(uint160(address(ETH_TOKEN_SYSTEM_CONTRACT))) || _addr == 0; } /// @notice Calculate the suggested signed hash of the transaction, /// i.e. the hash that is signed by EOAs and is recommended to be signed by other accounts. function encodeHash(Transaction calldata _transaction) internal view returns (bytes32 resultHash) { if (_transaction.txType == LEGACY_TX_TYPE) { resultHash = _encodeHashLegacyTransaction(_transaction); } else if (_transaction.txType == EIP_712_TX_TYPE) { resultHash = _encodeHashEIP712Transaction(_transaction); } else if (_transaction.txType == EIP_1559_TX_TYPE) { resultHash = _encodeHashEIP1559Transaction(_transaction); } else if (_transaction.txType == EIP_2930_TX_TYPE) { resultHash = _encodeHashEIP2930Transaction(_transaction); } else { // Currently no other transaction types are supported. // Any new transaction types will be processed in a similar manner. revert("Encoding unsupported tx"); } } /// @notice Encode hash of the zkSync native transaction type. /// @return keccak256 hash of the EIP-712 encoded representation of transaction function _encodeHashEIP712Transaction(Transaction calldata _transaction) private view returns (bytes32) { bytes32 structHash = keccak256( abi.encode( EIP712_TRANSACTION_TYPE_HASH, _transaction.txType, _transaction.from, _transaction.to, _transaction.gasLimit, _transaction.gasPerPubdataByteLimit, _transaction.maxFeePerGas, _transaction.maxPriorityFeePerGas, _transaction.paymaster, _transaction.nonce, _transaction.value, EfficientCall.keccak(_transaction.data), keccak256(abi.encodePacked(_transaction.factoryDeps)), EfficientCall.keccak(_transaction.paymasterInput) ) ); bytes32 domainSeparator = keccak256( abi.encode(EIP712_DOMAIN_TYPEHASH, keccak256("zkSync"), keccak256("2"), block.chainid) ); return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } /// @notice Encode hash of the legacy transaction type. /// @return keccak256 of the serialized RLP encoded representation of transaction function _encodeHashLegacyTransaction(Transaction calldata _transaction) private view returns (bytes32) { // Hash of legacy transactions are encoded as one of the: // - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0) // - RLP(nonce, gasPrice, gasLimit, to, value, data) // // In this RLP encoding, only the first one above list appears, so we encode each element // inside list and then concatenate the length of all elements with them. bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); // Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error". bytes memory encodedGasParam; { bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit); } bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // Encode `chainId` according to EIP-155, but only if the `chainId` is specified in the transaction. bytes memory encodedChainId; if (_transaction.reserved[0] != 0) { encodedChainId = bytes.concat(RLPEncoder.encodeUint256(block.chainid), hex"80_80"); } bytes memory encodedListLength; unchecked { uint256 listLength = encodedNonce.length + encodedGasParam.length + encodedTo.length + encodedValue.length + encodedDataLength.length + _transaction.data.length + encodedChainId.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( encodedListLength, encodedNonce, encodedGasParam, encodedTo, encodedValue, encodedDataLength, _transaction.data, encodedChainId ) ); } /// @notice Encode hash of the EIP2930 transaction type. /// @return keccak256 of the serialized RLP encoded representation of transaction function _encodeHashEIP2930Transaction(Transaction calldata _transaction) private view returns (bytes32) { // Hash of EIP2930 transactions is encoded the following way: // H(0x01 || RLP(chain_id, nonce, gas_price, gas_limit, destination, amount, data, access_list)) // // Note, that on zkSync access lists are not supported and should always be empty. // Encode all fixed-length params to avoid "stack too deep error" bytes memory encodedFixedLengthParams; { bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid); bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); encodedFixedLengthParams = bytes.concat( encodedChainId, encodedNonce, encodedGasPrice, encodedGasLimit, encodedTo, encodedValue ); } // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // On zkSync, access lists are always zero length (at least for now). bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0); bytes memory encodedListLength; unchecked { uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length + encodedAccessListLength.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( "\x01", encodedListLength, encodedFixedLengthParams, encodedDataLength, _transaction.data, encodedAccessListLength ) ); } /// @notice Encode hash of the EIP1559 transaction type. /// @return keccak256 of the serialized RLP encoded representation of transaction function _encodeHashEIP1559Transaction(Transaction calldata _transaction) private view returns (bytes32) { // Hash of EIP1559 transactions is encoded the following way: // H(0x02 || RLP(chain_id, nonce, max_priority_fee_per_gas, max_fee_per_gas, gas_limit, destination, amount, data, access_list)) // // Note, that on zkSync access lists are not supported and should always be empty. // Encode all fixed-length params to avoid "stack too deep error" bytes memory encodedFixedLengthParams; { bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid); bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas); bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); encodedFixedLengthParams = bytes.concat( encodedChainId, encodedNonce, encodedMaxPriorityFeePerGas, encodedMaxFeePerGas, encodedGasLimit, encodedTo, encodedValue ); } // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // On zkSync, access lists are always zero length (at least for now). bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0); bytes memory encodedListLength; unchecked { uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length + encodedAccessListLength.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( "\x02", encodedListLength, encodedFixedLengthParams, encodedDataLength, _transaction.data, encodedAccessListLength ) ); } /// @notice Processes the common paymaster flows, e.g. setting proper allowance /// for tokens, etc. For more information on the expected behavior, check out /// the "Paymaster flows" section in the documentation. function processPaymasterInput(Transaction calldata _transaction) internal { require(_transaction.paymasterInput.length >= 4, "The standard paymaster input must be at least 4 bytes long"); bytes4 paymasterInputSelector = bytes4(_transaction.paymasterInput[0:4]); if (paymasterInputSelector == IPaymasterFlow.approvalBased.selector) { require( _transaction.paymasterInput.length >= 68, "The approvalBased paymaster input must be at least 68 bytes long" ); // While the actual data consists of address, uint256 and bytes data, // the data is needed only for the paymaster, so we ignore it here for the sake of optimization (address token, uint256 minAllowance) = abi.decode(_transaction.paymasterInput[4:68], (address, uint256)); address paymaster = address(uint160(_transaction.paymaster)); uint256 currentAllowance = IERC20(token).allowance(address(this), paymaster); if (currentAllowance < minAllowance) { // Some tokens, e.g. USDT require that the allowance is firsty set to zero // and only then updated to the new value. IERC20(token).safeApprove(paymaster, 0); IERC20(token).safeApprove(paymaster, minAllowance); } } else if (paymasterInputSelector == IPaymasterFlow.general.selector) { // Do nothing. general(bytes) paymaster flow means that the paymaster must interpret these bytes on his own. } else { revert("Unsupported paymaster flow"); } } /// @notice Pays the required fee for the transaction to the bootloader. /// @dev Currently it pays the maximum amount "_transaction.maxFeePerGas * _transaction.gasLimit", /// it will change in the future. function payToTheBootloader(Transaction calldata _transaction) internal returns (bool success) { address bootloaderAddr = BOOTLOADER_FORMAL_ADDRESS; uint256 amount = _transaction.maxFeePerGas * _transaction.gasLimit; assembly { success := call(gas(), bootloaderAddr, amount, 0, 0, 0, 0) } } // Returns the balance required to process the transaction. function totalRequiredBalance(Transaction calldata _transaction) internal pure returns (uint256 requiredBalance) { if (address(uint160(_transaction.paymaster)) != address(0)) { // Paymaster pays for the fee requiredBalance = _transaction.value; } else { // The user should have enough balance for both the fee and the value of the transaction requiredBalance = _transaction.maxFeePerGas * _transaction.gasLimit + _transaction.value; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../libraries/TransactionHelper.sol"; enum ExecutionResult { Revert, Success } bytes4 constant PAYMASTER_VALIDATION_SUCCESS_MAGIC = IPaymaster.validateAndPayForPaymasterTransaction.selector; interface IPaymaster { /// @dev Called by the bootloader to verify that the paymaster agrees to pay for the /// fee for the transaction. This transaction should also send the necessary amount of funds onto the bootloader /// address. /// @param _txHash The hash of the transaction /// @param _suggestedSignedHash The hash of the transaction that is signed by an EOA /// @param _transaction The transaction itself. /// @return magic The value that should be equal to the signature of the validateAndPayForPaymasterTransaction /// if the paymaster agrees to pay for the transaction. /// @return context The "context" of the transaction: an array of bytes of length at most 1024 bytes, which will be /// passed to the `postTransaction` method of the account. /// @dev The developer should strive to preserve as many steps as possible both for valid /// and invalid transactions as this very method is also used during the gas fee estimation /// (without some of the necessary data, e.g. signature). function validateAndPayForPaymasterTransaction( bytes32 _txHash, bytes32 _suggestedSignedHash, Transaction calldata _transaction ) external payable returns (bytes4 magic, bytes memory context); /// @dev Called by the bootloader after the execution of the transaction. Please note that /// there is no guarantee that this method will be called at all. Unlike the original EIP4337, /// this method won't be called if the transaction execution results in out-of-gas. /// @param _context, the context of the execution, returned by the "validateAndPayForPaymasterTransaction" method. /// @param _transaction, the users' transaction. /// @param _txResult, the result of the transaction execution (success or failure). /// @param _maxRefundedGas, the upper bound on the amout of gas that could be refunded to the paymaster. /// @dev The exact amount refunded depends on the gas spent by the "postOp" itself and so the developers should /// take that into account. function postTransaction( bytes calldata _context, Transaction calldata _transaction, bytes32 _txHash, bytes32 _suggestedSignedHash, ExecutionResult _txResult, uint256 _maxRefundedGas ) external payable; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./interfaces/IAccountCodeStorage.sol"; import "./interfaces/INonceHolder.sol"; import "./interfaces/IContractDeployer.sol"; import "./interfaces/IKnownCodesStorage.sol"; import "./interfaces/IImmutableSimulator.sol"; import "./interfaces/IEthToken.sol"; import "./interfaces/IL1Messenger.sol"; import "./interfaces/ISystemContext.sol"; import "./interfaces/IBytecodeCompressor.sol"; import "./BootloaderUtilities.sol"; /// @dev All the system contracts introduced by zkSync have their addresses /// started from 2^15 in order to avoid collision with Ethereum precompiles. uint160 constant SYSTEM_CONTRACTS_OFFSET = 0x8000; // 2^15 /// @dev All the system contracts must be located in the kernel space, /// i.e. their addresses must be below 2^16. uint160 constant MAX_SYSTEM_CONTRACT_ADDRESS = 0xffff; // 2^16 - 1 address constant ECRECOVER_SYSTEM_CONTRACT = address(0x01); address constant SHA256_SYSTEM_CONTRACT = address(0x02); /// @dev The current maximum deployed precompile address. /// Note: currently only two precompiles are deployed: /// 0x01 - ecrecover /// 0x02 - sha256 /// Important! So the constant should be updated if more precompiles are deployed. uint256 constant CURRENT_MAX_PRECOMPILE_ADDRESS = uint256(uint160(SHA256_SYSTEM_CONTRACT)); address payable constant BOOTLOADER_FORMAL_ADDRESS = payable(address(SYSTEM_CONTRACTS_OFFSET + 0x01)); IAccountCodeStorage constant ACCOUNT_CODE_STORAGE_SYSTEM_CONTRACT = IAccountCodeStorage( address(SYSTEM_CONTRACTS_OFFSET + 0x02) ); INonceHolder constant NONCE_HOLDER_SYSTEM_CONTRACT = INonceHolder(address(SYSTEM_CONTRACTS_OFFSET + 0x03)); IKnownCodesStorage constant KNOWN_CODE_STORAGE_CONTRACT = IKnownCodesStorage(address(SYSTEM_CONTRACTS_OFFSET + 0x04)); IImmutableSimulator constant IMMUTABLE_SIMULATOR_SYSTEM_CONTRACT = IImmutableSimulator( address(SYSTEM_CONTRACTS_OFFSET + 0x05) ); IContractDeployer constant DEPLOYER_SYSTEM_CONTRACT = IContractDeployer(address(SYSTEM_CONTRACTS_OFFSET + 0x06)); // A contract that is allowed to deploy any codehash // on any address. To be used only during an upgrade. address constant FORCE_DEPLOYER = address(SYSTEM_CONTRACTS_OFFSET + 0x07); IL1Messenger constant L1_MESSENGER_CONTRACT = IL1Messenger(address(SYSTEM_CONTRACTS_OFFSET + 0x08)); address constant MSG_VALUE_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x09); IEthToken constant ETH_TOKEN_SYSTEM_CONTRACT = IEthToken(address(SYSTEM_CONTRACTS_OFFSET + 0x0a)); address constant KECCAK256_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x10); ISystemContext constant SYSTEM_CONTEXT_CONTRACT = ISystemContext(payable(address(SYSTEM_CONTRACTS_OFFSET + 0x0b))); BootloaderUtilities constant BOOTLOADER_UTILITIES = BootloaderUtilities(address(SYSTEM_CONTRACTS_OFFSET + 0x0c)); address constant EVENT_WRITER_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x0d); IBytecodeCompressor constant BYTECODE_COMPRESSOR_CONTRACT = IBytecodeCompressor( address(SYSTEM_CONTRACTS_OFFSET + 0x0e) ); /// @dev If the bitwise AND of the extraAbi[2] param when calling the MSG_VALUE_SIMULATOR /// is non-zero, the call will be assumed to be a system one. uint256 constant MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT = 1; /// @dev The maximal msg.value that context can have uint256 constant MAX_MSG_VALUE = 2 ** 128 - 1; /// @dev Prefix used during derivation of account addresses using CREATE2 /// @dev keccak256("zksyncCreate2") bytes32 constant CREATE2_PREFIX = 0x2020dba91b30cc0006188af794c2fb30dd8520db7e2c088b7fc7c103c00ca494; /// @dev Prefix used during derivation of account addresses using CREATE /// @dev keccak256("zksyncCreate") bytes32 constant CREATE_PREFIX = 0x63bae3a9951d38e8a3fbb7b70909afc1200610fc5bc55ade242f815974674f23;
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IContractDeployer { /// @notice Defines the version of the account abstraction protocol /// that a contract claims to follow. /// - `None` means that the account is just a contract and it should never be interacted /// with as a custom account /// - `Version1` means that the account follows the first version of the account abstraction protocol enum AccountAbstractionVersion { None, Version1 } /// @notice Defines the nonce ordering used by the account /// - `Sequential` means that it is expected that the nonces are monotonic and increment by 1 /// at a time (the same as EOAs). /// - `Arbitrary` means that the nonces for the accounts can be arbitrary. The operator /// should serve the transactions from such an account on a first-come-first-serve basis. /// @dev This ordering is more of a suggestion to the operator on how the AA expects its transactions /// to be processed and is not considered as a system invariant. enum AccountNonceOrdering { Sequential, Arbitrary } struct AccountInfo { AccountAbstractionVersion supportedAAVersion; AccountNonceOrdering nonceOrdering; } event ContractDeployed( address indexed deployerAddress, bytes32 indexed bytecodeHash, address indexed contractAddress ); event AccountNonceOrderingUpdated(address indexed accountAddress, AccountNonceOrdering nonceOrdering); event AccountVersionUpdated(address indexed accountAddress, AccountAbstractionVersion aaVersion); function getNewAddressCreate2( address _sender, bytes32 _bytecodeHash, bytes32 _salt, bytes calldata _input ) external view returns (address newAddress); function getNewAddressCreate(address _sender, uint256 _senderNonce) external pure returns (address newAddress); function create2( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input ) external payable returns (address newAddress); function create2Account( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input, AccountAbstractionVersion _aaVersion ) external payable returns (address newAddress); /// @dev While the `_salt` parameter is not used anywhere here, /// it is still needed for consistency between `create` and /// `create2` functions (required by the compiler). function create( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input ) external payable returns (address newAddress); /// @dev While `_salt` is never used here, we leave it here as a parameter /// for the consistency with the `create` function. function createAccount( bytes32 _salt, bytes32 _bytecodeHash, bytes calldata _input, AccountAbstractionVersion _aaVersion ) external payable returns (address newAddress); /// @notice Returns the information about a certain AA. function getAccountInfo(address _address) external view returns (AccountInfo memory info); /// @notice Can be called by an account to update its account version function updateAccountVersion(AccountAbstractionVersion _version) external; /// @notice Can be called by an account to update its nonce ordering function updateNonceOrdering(AccountNonceOrdering _nonceOrdering) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @author Matter Labs * @dev The interface that is used for encoding/decoding of * different types of paymaster flows. * @notice This is NOT an interface to be implementated * by contracts. It is just used for encoding. */ interface IPaymasterFlow { function general(bytes calldata input) external; function approvalBased(address _token, uint256 _minAllowance, bytes calldata _innerInput) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transfer.selector, to, value) ); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value) ); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, value) ); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require( oldAllowance >= value, "SafeERC20: decreased allowance below zero" ); uint256 newAllowance = oldAllowance - value; _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require( nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed" ); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall( data, "SafeERC20: low-level call failed" ); if (returndata.length > 0) { // Return data is optional require( abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed" ); } } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity ^0.8.0; import "./SystemContractHelper.sol"; import "./Utils.sol"; import {SHA256_SYSTEM_CONTRACT, KECCAK256_SYSTEM_CONTRACT} from "../Constants.sol"; /** * @author Matter Labs * @notice This library is used to perform ultra-efficient calls using zkEVM-specific features. * @dev EVM calls always accept a memory slice as input and return a memory slice as output. * Therefore, even if the user has a ready-made calldata slice, they still need to copy it to memory * before calling. This is especially inefficient for large inputs (proxies, multi-calls, etc.). * In turn, zkEVM operates over a fat pointer, which is a set of (memory page, offset, start, length) in the memory/calldata/returndata. * This allows forwarding the calldata slice as is, without copying it to memory. * @dev Fat pointer is not just an integer, it is an extended data type supported on the VM level. * zkEVM creates the wellformed fat pointers for all the calldata/returndata regions, later * the contract may manipulate the already created fat pointers to forward a slice of the data, but not * to create new fat pointers! * @dev The allowed operation on fat pointers are: * 1. `ptr.add` - Transforms `ptr.offset` into `ptr.offset + u32(_value)`. If overflow happens then it panics. * 2. `ptr.sub` - Transforms `ptr.offset` into `ptr.offset - u32(_value)`. If underflow happens then it panics. * 3. `ptr.pack` - Do the concatenation between the lowest 128 bits of the pointer itself and the highest 128 bits of `_value`. It is typically used to prepare the ABI for external calls. * 4. `ptr.shrink` - Transforms `ptr.length` into `ptr.length - u32(_shrink)`. If underflow happens then it panics. * @dev The call opcodes accept the fat pointer and change it to its canonical form before passing it to the child call * 1. `ptr.start` is transformed into `ptr.offset + ptr.start` * 2. `ptr.length` is transformed into `ptr.length - ptr.offset` * 3. `ptr.offset` is transformed into `0` */ library EfficientCall { /// @notice Call the `keccak256` without copying calldata to memory. /// @param _data The preimage data. /// @return The `keccak256` hash. function keccak(bytes calldata _data) internal view returns (bytes32) { bytes memory returnData = staticCall(gasleft(), KECCAK256_SYSTEM_CONTRACT, _data); require(returnData.length == 32, "keccak256 returned invalid data"); return bytes32(returnData); } /// @notice Call the `sha256` precompile without copying calldata to memory. /// @param _data The preimage data. /// @return The `sha256` hash. function sha(bytes calldata _data) internal view returns (bytes32) { bytes memory returnData = staticCall(gasleft(), SHA256_SYSTEM_CONTRACT, _data); require(returnData.length == 32, "sha returned invalid data"); return bytes32(returnData); } /// @notice Perform a `call` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _value The `msg.value` to send. /// @param _data The calldata to use for the call. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return returnData The copied to memory return data. function call( uint256 _gas, address _address, uint256 _value, bytes calldata _data, bool _isSystem ) internal returns (bytes memory returnData) { bool success = rawCall(_gas, _address, _value, _data, _isSystem); returnData = _verifyCallResult(success); } /// @notice Perform a `staticCall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return returnData The copied to memory return data. function staticCall( uint256 _gas, address _address, bytes calldata _data ) internal view returns (bytes memory returnData) { bool success = rawStaticCall(_gas, _address, _data); returnData = _verifyCallResult(success); } /// @notice Perform a `delegateCall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return returnData The copied to memory return data. function delegateCall( uint256 _gas, address _address, bytes calldata _data ) internal returns (bytes memory returnData) { bool success = rawDelegateCall(_gas, _address, _data); returnData = _verifyCallResult(success); } /// @notice Perform a `mimicCall` (a call with custom msg.sender) without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @param _whoToMimic The `msg.sender` for the next call. /// @param _isConstructor Whether the call should contain the `isConstructor` flag. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return returnData The copied to memory return data. function mimicCall( uint256 _gas, address _address, bytes calldata _data, address _whoToMimic, bool _isConstructor, bool _isSystem ) internal returns (bytes memory returnData) { bool success = rawMimicCall(_gas, _address, _data, _whoToMimic, _isConstructor, _isSystem); returnData = _verifyCallResult(success); } /// @notice Perform a `call` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _value The `msg.value` to send. /// @param _data The calldata to use for the call. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return success whether the call was successful. function rawCall( uint256 _gas, address _address, uint256 _value, bytes calldata _data, bool _isSystem ) internal returns (bool success) { if (_value == 0) { _loadFarCallABIIntoActivePtr(_gas, _data, false, _isSystem); address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS; assembly { success := call(_address, callAddr, 0, 0, 0xFFFF, 0, 0) } } else { _loadFarCallABIIntoActivePtr(_gas, _data, false, true); // If there is provided `msg.value` call the `MsgValueSimulator` to forward ether. address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT; address callAddr = SYSTEM_CALL_BY_REF_CALL_ADDRESS; // We need to supply the mask to the MsgValueSimulator to denote // that the call should be a system one. uint256 forwardMask = _isSystem ? MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT : 0; assembly { success := call(msgValueSimulator, callAddr, _value, _address, 0xFFFF, forwardMask, 0) } } } /// @notice Perform a `staticCall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return success whether the call was successful. function rawStaticCall(uint256 _gas, address _address, bytes calldata _data) internal view returns (bool success) { _loadFarCallABIIntoActivePtr(_gas, _data, false, false); address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS; assembly { success := staticcall(_address, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Perform a `delegatecall` without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @return success whether the call was successful. function rawDelegateCall(uint256 _gas, address _address, bytes calldata _data) internal returns (bool success) { _loadFarCallABIIntoActivePtr(_gas, _data, false, false); address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS; assembly { success := delegatecall(_address, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Perform a `mimicCall` (call with custom msg.sender) without copying calldata to memory. /// @param _gas The gas to use for the call. /// @param _address The address to call. /// @param _data The calldata to use for the call. /// @param _whoToMimic The `msg.sender` for the next call. /// @param _isConstructor Whether the call should contain the `isConstructor` flag. /// @param _isSystem Whether the call should contain the `isSystem` flag. /// @return success whether the call was successful. /// @dev If called not in kernel mode, it will result in a revert (enforced by the VM) function rawMimicCall( uint256 _gas, address _address, bytes calldata _data, address _whoToMimic, bool _isConstructor, bool _isSystem ) internal returns (bool success) { _loadFarCallABIIntoActivePtr(_gas, _data, _isConstructor, _isSystem); address callAddr = MIMIC_CALL_BY_REF_CALL_ADDRESS; uint256 cleanupMask = ADDRESS_MASK; assembly { // Clearing values before usage in assembly, since Solidity // doesn't do it by default _whoToMimic := and(_whoToMimic, cleanupMask) success := call(_address, callAddr, 0, 0, _whoToMimic, 0, 0) } } /// @dev Verify that a low-level call was successful, and revert if it wasn't, by bubbling the revert reason. /// @param _success Whether the call was successful. /// @return returnData The copied to memory return data. function _verifyCallResult(bool _success) private pure returns (bytes memory returnData) { if (_success) { uint256 size; assembly { size := returndatasize() } returnData = new bytes(size); assembly { returndatacopy(add(returnData, 0x20), 0, size) } } else { propagateRevert(); } } /// @dev Propagate the revert reason from the current call to the caller. function propagateRevert() internal pure { assembly { let size := returndatasize() returndatacopy(0, 0, size) revert(0, size) } } /// @dev Load the far call ABI into active ptr, that will be used for the next call by reference. /// @param _gas The gas to be passed to the call. /// @param _data The calldata to be passed to the call. /// @param _isConstructor Whether the call is a constructor call. /// @param _isSystem Whether the call is a system call. function _loadFarCallABIIntoActivePtr( uint256 _gas, bytes calldata _data, bool _isConstructor, bool _isSystem ) private view { SystemContractHelper.loadCalldataIntoActivePtr(); // Currently, zkEVM considers the pointer valid if(ptr.offset < ptr.length || (ptr.length == 0 && ptr.offset == 0)), otherwise panics. // So, if the data is empty we need to make the `ptr.length = ptr.offset = 0`, otherwise follow standard logic. if (_data.length == 0) { // Safe to cast, offset is never bigger than `type(uint32).max` SystemContractHelper.ptrShrinkIntoActive(uint32(msg.data.length)); } else { uint256 dataOffset; assembly { dataOffset := _data.offset } // Safe to cast, offset is never bigger than `type(uint32).max` SystemContractHelper.ptrAddIntoActive(uint32(dataOffset)); // Safe to cast, `data.length` is never bigger than `type(uint32).max` uint32 shrinkTo = uint32(msg.data.length - (_data.length + dataOffset)); SystemContractHelper.ptrShrinkIntoActive(shrinkTo); } uint32 gas = Utils.safeCastToU32(_gas); uint256 farCallAbi = SystemContractsCaller.getFarCallABIWithEmptyFatPointer( gas, // Only rollup is supported for now 0, CalldataForwardingMode.ForwardFatPointer, _isConstructor, _isSystem ); SystemContractHelper.ptrPackIntoActivePtr(farCallAbi); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; library RLPEncoder { function encodeAddress(address _val) internal pure returns (bytes memory encoded) { // The size is equal to 20 bytes of the address itself + 1 for encoding bytes length in RLP. encoded = new bytes(0x15); bytes20 shiftedVal = bytes20(_val); assembly { // In the first byte we write the encoded length as 0x80 + 0x14 == 0x94. mstore(add(encoded, 0x20), 0x9400000000000000000000000000000000000000000000000000000000000000) // Write address data without stripping zeros. mstore(add(encoded, 0x21), shiftedVal) } } function encodeUint256(uint256 _val) internal pure returns (bytes memory encoded) { unchecked { if (_val < 128) { encoded = new bytes(1); // Handle zero as a non-value, since stripping zeroes results in an empty byte array encoded[0] = (_val == 0) ? bytes1(uint8(128)) : bytes1(uint8(_val)); } else { uint256 hbs = _highestByteSet(_val); encoded = new bytes(hbs + 2); encoded[0] = bytes1(uint8(hbs + 0x81)); uint256 lbs = 31 - hbs; uint256 shiftedVal = _val << (lbs * 8); assembly { mstore(add(encoded, 0x21), shiftedVal) } } } } /// @notice Encodes the size of bytes in RLP format. /// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported. /// NOTE: panics if the length is 1 since the length encoding is ambiguous in this case. function encodeNonSingleBytesLen(uint64 _len) internal pure returns (bytes memory) { assert(_len != 1); return _encodeLength(_len, 0x80); } /// @notice Encodes the size of list items in RLP format. /// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported. function encodeListLen(uint64 _len) internal pure returns (bytes memory) { return _encodeLength(_len, 0xc0); } function _encodeLength(uint64 _len, uint256 _offset) private pure returns (bytes memory encoded) { unchecked { if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len + _offset)); } else { uint256 hbs = _highestByteSet(uint256(_len)); encoded = new bytes(hbs + 2); encoded[0] = bytes1(uint8(_offset + hbs + 56)); uint256 lbs = 31 - hbs; uint256 shiftedVal = uint256(_len) << (lbs * 8); assembly { mstore(add(encoded, 0x21), shiftedVal) } } } } /// @notice Computes the index of the highest byte set in number. /// @notice Uses little endian ordering (The least significant byte has index `0`). /// NOTE: returns `0` for `0` function _highestByteSet(uint256 _number) private pure returns (uint256 hbs) { unchecked { if (_number > type(uint128).max) { _number >>= 128; hbs += 16; } if (_number > type(uint64).max) { _number >>= 64; hbs += 8; } if (_number > type(uint32).max) { _number >>= 32; hbs += 4; } if (_number > type(uint16).max) { _number >>= 16; hbs += 2; } if (_number > type(uint8).max) { hbs += 1; } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IAccountCodeStorage { function storeAccountConstructingCodeHash(address _address, bytes32 _hash) external; function storeAccountConstructedCodeHash(address _address, bytes32 _hash) external; function markAccountCodeHashAsConstructed(address _address) external; function getRawCodeHash(address _address) external view returns (bytes32 codeHash); function getCodeHash(uint256 _input) external view returns (bytes32 codeHash); function getCodeSize(uint256 _input) external view returns (uint256 codeSize); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IKnownCodesStorage { event MarkedAsKnown(bytes32 indexed bytecodeHash, bool indexed sendBytecodeToL1); function markFactoryDeps(bool _shouldSendToL1, bytes32[] calldata _hashes) external; function markBytecodeAsPublished( bytes32 _bytecodeHash, bytes32 _l1PreimageHash, uint256 _l1PreimageBytesLen ) external; function getMarker(bytes32 _hash) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @author Matter Labs * @dev Interface of the nonce holder contract -- a contract used by the system to ensure * that there is always a unique identifier for a transaction with a particular account (we call it nonce). * In other words, the pair of (address, nonce) should always be unique. * @dev Custom accounts should use methods of this contract to store nonces or other possible unique identifiers * for the transaction. */ interface INonceHolder { event ValueSetUnderNonce(address indexed accountAddress, uint256 indexed key, uint256 value); /// @dev Returns the current minimal nonce for account. function getMinNonce(address _address) external view returns (uint256); /// @dev Returns the raw version of the current minimal nonce /// (equal to minNonce + 2^128 * deployment nonce). function getRawNonce(address _address) external view returns (uint256); /// @dev Increases the minimal nonce for the msg.sender. function increaseMinNonce(uint256 _value) external returns (uint256); /// @dev Sets the nonce value `key` as used. function setValueUnderNonce(uint256 _key, uint256 _value) external; /// @dev Gets the value stored inside a custom nonce. function getValueUnderNonce(uint256 _key) external view returns (uint256); /// @dev A convenience method to increment the minimal nonce if it is equal /// to the `_expectedNonce`. function incrementMinNonceIfEquals(uint256 _expectedNonce) external; /// @dev Returns the deployment nonce for the accounts used for CREATE opcode. function getDeploymentNonce(address _address) external view returns (uint256); /// @dev Increments the deployment nonce for the account and returns the previous one. function incrementDeploymentNonce(address _address) external returns (uint256); /// @dev Determines whether a certain nonce has been already used for an account. function validateNonceUsage(address _address, uint256 _key, bool _shouldBeUsed) external view; /// @dev Returns whether a nonce has been used for an account. function isNonceUsed(address _address, uint256 _nonce) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; struct ImmutableData { uint256 index; bytes32 value; } interface IImmutableSimulator { function getImmutable(address _dest, uint256 _index) external view returns (bytes32); function setImmutables(address _dest, ImmutableData[] calldata _immutables) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IEthToken { function balanceOf(uint256) external view returns (uint256); function transferFromTo(address _from, address _to, uint256 _amount) external; function totalSupply() external view returns (uint256); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function mint(address _account, uint256 _amount) external; function withdraw(address _l1Receiver) external payable; event Mint(address indexed account, uint256 amount); event Transfer(address indexed from, address indexed to, uint256 value); event Withdrawal(address indexed _l2Sender, address indexed _l1Receiver, uint256 _amount); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./interfaces/IBootloaderUtilities.sol"; import "./libraries/TransactionHelper.sol"; import "./libraries/RLPEncoder.sol"; import "./libraries/EfficientCall.sol"; /** * @author Matter Labs * @notice A contract that provides some utility methods for the bootloader * that is very hard to write in Yul. */ contract BootloaderUtilities is IBootloaderUtilities { using TransactionHelper for *; /// @notice Calculates the canonical transaction hash and the recommended transaction hash. /// @param _transaction The transaction. /// @return txHash and signedTxHash of the transaction, i.e. the transaction hash to be used in the explorer and commits to all /// the fields of the transaction and the recommended hash to be signed for this transaction. /// @dev txHash must be unique for all transactions. function getTransactionHashes( Transaction calldata _transaction ) external view override returns (bytes32 txHash, bytes32 signedTxHash) { signedTxHash = _transaction.encodeHash(); if (_transaction.txType == EIP_712_TX_TYPE) { txHash = keccak256(bytes.concat(signedTxHash, EfficientCall.keccak(_transaction.signature))); } else if (_transaction.txType == LEGACY_TX_TYPE) { txHash = encodeLegacyTransactionHash(_transaction); } else if (_transaction.txType == EIP_1559_TX_TYPE) { txHash = encodeEIP1559TransactionHash(_transaction); } else if (_transaction.txType == EIP_2930_TX_TYPE) { txHash = encodeEIP2930TransactionHash(_transaction); } else { revert("Unsupported tx type"); } } /// @notice Calculates the hash for a legacy transaction. /// @param _transaction The legacy transaction. /// @return txHash The hash of the transaction. function encodeLegacyTransactionHash(Transaction calldata _transaction) internal view returns (bytes32 txHash) { // Hash of legacy transactions are encoded as one of the: // - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0) // - RLP(nonce, gasPrice, gasLimit, to, value, data) // // In this RLP encoding, only the first one above list appears, so we encode each element // inside list and then concatenate the length of all elements with them. bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); // Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error". bytes memory encodedGasParam; { bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit); } bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } bytes memory rEncoded; { uint256 rInt = uint256(bytes32(_transaction.signature[0:32])); rEncoded = RLPEncoder.encodeUint256(rInt); } bytes memory sEncoded; { uint256 sInt = uint256(bytes32(_transaction.signature[32:64])); sEncoded = RLPEncoder.encodeUint256(sInt); } bytes memory vEncoded; { uint256 vInt = uint256(uint8(_transaction.signature[64])); require(vInt == 27 || vInt == 28, "Invalid v value"); // If the `chainId` is specified in the transaction, then the `v` value is encoded as // `35 + y + 2 * chainId == vInt + 8 + 2 * chainId`, where y - parity bit (see EIP-155). if (_transaction.reserved[0] != 0) { vInt += 8 + block.chainid * 2; } vEncoded = RLPEncoder.encodeUint256(vInt); } bytes memory encodedListLength; unchecked { uint256 listLength = encodedNonce.length + encodedGasParam.length + encodedTo.length + encodedValue.length + encodedDataLength.length + _transaction.data.length + rEncoded.length + sEncoded.length + vEncoded.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( encodedListLength, encodedNonce, encodedGasParam, encodedTo, encodedValue, encodedDataLength, _transaction.data, vEncoded, rEncoded, sEncoded ) ); } /// @notice Calculates the hash for an EIP2930 transaction. /// @param _transaction The EIP2930 transaction. /// @return txHash The hash of the transaction. function encodeEIP2930TransactionHash(Transaction calldata _transaction) internal view returns (bytes32) { // Encode all fixed-length params to avoid "stack too deep error" bytes memory encodedFixedLengthParams; { bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid); bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); encodedFixedLengthParams = bytes.concat( encodedChainId, encodedNonce, encodedGasPrice, encodedGasLimit, encodedTo, encodedValue ); } // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // On zkSync, access lists are always zero length (at least for now). bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0); bytes memory rEncoded; { uint256 rInt = uint256(bytes32(_transaction.signature[0:32])); rEncoded = RLPEncoder.encodeUint256(rInt); } bytes memory sEncoded; { uint256 sInt = uint256(bytes32(_transaction.signature[32:64])); sEncoded = RLPEncoder.encodeUint256(sInt); } bytes memory vEncoded; { uint256 vInt = uint256(uint8(_transaction.signature[64])); require(vInt == 27 || vInt == 28, "Invalid v value"); vEncoded = RLPEncoder.encodeUint256(vInt - 27); } bytes memory encodedListLength; unchecked { uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length + encodedAccessListLength.length + rEncoded.length + sEncoded.length + vEncoded.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( "\x01", encodedListLength, encodedFixedLengthParams, encodedDataLength, _transaction.data, encodedAccessListLength, vEncoded, rEncoded, sEncoded ) ); } /// @notice Calculates the hash for an EIP1559 transaction. /// @param _transaction The legacy transaction. /// @return txHash The hash of the transaction. function encodeEIP1559TransactionHash(Transaction calldata _transaction) internal view returns (bytes32) { // The formula for hash of EIP1559 transaction in the original proposal: // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md // Encode all fixed-length params to avoid "stack too deep error" bytes memory encodedFixedLengthParams; { bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid); bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce); bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas); bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas); bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit); bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to))); bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value); encodedFixedLengthParams = bytes.concat( encodedChainId, encodedNonce, encodedMaxPriorityFeePerGas, encodedMaxFeePerGas, encodedGasLimit, encodedTo, encodedValue ); } // Encode only the length of the transaction data, and not the data itself, // so as not to copy to memory a potentially huge transaction data twice. bytes memory encodedDataLength; { // Safe cast, because the length of the transaction data can't be so large. uint64 txDataLen = uint64(_transaction.data.length); if (txDataLen != 1) { // If the length is not equal to one, then only using the length can it be encoded definitely. encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen); } else if (_transaction.data[0] >= 0x80) { // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte. encodedDataLength = hex"81"; } // Otherwise the length is not encoded at all. } // On zkSync, access lists are always zero length (at least for now). bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0); bytes memory rEncoded; { uint256 rInt = uint256(bytes32(_transaction.signature[0:32])); rEncoded = RLPEncoder.encodeUint256(rInt); } bytes memory sEncoded; { uint256 sInt = uint256(bytes32(_transaction.signature[32:64])); sEncoded = RLPEncoder.encodeUint256(sInt); } bytes memory vEncoded; { uint256 vInt = uint256(uint8(_transaction.signature[64])); require(vInt == 27 || vInt == 28, "Invalid v value"); vEncoded = RLPEncoder.encodeUint256(vInt - 27); } bytes memory encodedListLength; unchecked { uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length + encodedAccessListLength.length + rEncoded.length + sEncoded.length + vEncoded.length; // Safe cast, because the length of the list can't be so large. encodedListLength = RLPEncoder.encodeListLen(uint64(listLength)); } return keccak256( bytes.concat( "\x02", encodedListLength, encodedFixedLengthParams, encodedDataLength, _transaction.data, encodedAccessListLength, vEncoded, rEncoded, sEncoded ) ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @author Matter Labs * @notice Contract that stores some of the context variables, that may be either * block-scoped, tx-scoped or system-wide. */ interface ISystemContext { function chainId() external view returns (uint256); function origin() external view returns (address); function gasPrice() external view returns (uint256); function blockGasLimit() external view returns (uint256); function coinbase() external view returns (address); function difficulty() external view returns (uint256); function baseFee() external view returns (uint256); function blockHash(uint256 _block) external view returns (bytes32); function getBlockHashEVM(uint256 _block) external view returns (bytes32); function getBlockNumberAndTimestamp() external view returns (uint256 blockNumber, uint256 blockTimestamp); // Note, that for now, the implementation of the bootloader allows this variables to // be incremented multiple times inside a block, so it should not relied upon right now. function getBlockNumber() external view returns (uint256); function getBlockTimestamp() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IBytecodeCompressor { function publishCompressedBytecode( bytes calldata _bytecode, bytes calldata _rawCompressedData ) external payable returns (bytes32 bytecodeHash); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SafeCast} from "./math/SafeCast.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt(string memory input) internal pure returns (bool success, int256 value) { return _tryParseIntUncheckedBounds(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseIntUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseIntUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseHexUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseHexUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress(string memory input) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { if (end > bytes(input).length || begin > end) return (false, address(0)); bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 expectedLength = 40 + hasPrefix.toUint() * 2; // check that input is the correct length if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(buffer, add(0x20, offset))) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IL1Messenger { // Possibly in the future we will be able to track the messages sent to L1 with // some hooks in the VM. For now, it is much easier to track them with L2 events. event L1MessageSent(address indexed _sender, bytes32 indexed _hash, bytes _message); function sendToL1(bytes memory _message) external returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require( address(this).balance >= amount, "Address: insufficient balance" ); (bool success, ) = recipient.call{value: amount}(""); require( success, "Address: unable to send value, recipient may have reverted" ); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue( target, data, 0, "Address: low-level call failed" ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue( target, data, value, "Address: low-level call with value failed" ); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require( address(this).balance >= value, "Address: insufficient balance for call" ); (bool success, bytes memory returndata) = target.call{value: value}( data ); return verifyCallResultFromTarget( target, success, returndata, errorMessage ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall( target, data, "Address: low-level static call failed" ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget( target, success, returndata, errorMessage ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall( target, data, "Address: low-level delegate call failed" ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget( target, success, returndata, errorMessage ); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8; import {MAX_SYSTEM_CONTRACT_ADDRESS, MSG_VALUE_SYSTEM_CONTRACT} from "../Constants.sol"; import "./SystemContractsCaller.sol"; import "./Utils.sol"; uint256 constant UINT32_MASK = 0xffffffff; uint256 constant UINT128_MASK = 0xffffffffffffffffffffffffffffffff; /// @dev The mask that is used to convert any uint256 to a proper address. /// It needs to be padded with `00` to be treated as uint256 by Solidity uint256 constant ADDRESS_MASK = 0x00ffffffffffffffffffffffffffffffffffffffff; struct ZkSyncMeta { uint32 gasPerPubdataByte; uint32 heapSize; uint32 auxHeapSize; uint8 shardId; uint8 callerShardId; uint8 codeShardId; } enum Global { CalldataPtr, CallFlags, ExtraABIData1, ExtraABIData2, ReturndataPtr } /** * @author Matter Labs * @notice Library used for accessing zkEVM-specific opcodes, needed for the development * of system contracts. * @dev While this library will be eventually available to public, some of the provided * methods won't work for non-system contracts. We will not recommend this library * for external use. */ library SystemContractHelper { /// @notice Send an L2Log to L1. /// @param _isService The `isService` flag. /// @param _key The `key` part of the L2Log. /// @param _value The `value` part of the L2Log. /// @dev The meaning of all these parameters is context-dependent, but they /// have no intrinsic meaning per se. function toL1(bool _isService, bytes32 _key, bytes32 _value) internal { address callAddr = TO_L1_CALL_ADDRESS; assembly { // Ensuring that the type is bool _isService := and(_isService, 1) // This `success` is always 0, but the method always succeeds // (except for the cases when there is not enough gas) let success := call(_isService, callAddr, _key, _value, 0xFFFF, 0, 0) } } /// @notice Get address of the currently executed code. /// @dev This allows differentiating between `call` and `delegatecall`. /// During the former `this` and `codeAddress` are the same, while /// during the latter they are not. function getCodeAddress() internal view returns (address addr) { address callAddr = CODE_ADDRESS_CALL_ADDRESS; assembly { addr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Provide a compiler hint, by placing calldata fat pointer into virtual `ACTIVE_PTR`, /// that can be manipulated by `ptr.add`/`ptr.sub`/`ptr.pack`/`ptr.shrink` later. /// @dev This allows making a call by forwarding calldata pointer to the child call. /// It is a much more efficient way to forward calldata, than standard EVM bytes copying. function loadCalldataIntoActivePtr() internal view { address callAddr = LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS; assembly { pop(staticcall(0, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice Compiler simulation of the `ptr.pack` opcode for the virtual `ACTIVE_PTR` pointer. /// @dev Do the concatenation between lowest part of `ACTIVE_PTR` and highest part of `_farCallAbi` /// forming packed fat pointer for a far call or ret ABI when necessary. /// Note: Panics if the lowest 128 bits of `_farCallAbi` are not zeroes. function ptrPackIntoActivePtr(uint256 _farCallAbi) internal view { address callAddr = PTR_PACK_INTO_ACTIVE_CALL_ADDRESS; assembly { pop(staticcall(_farCallAbi, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice Compiler simulation of the `ptr.add` opcode for the virtual `ACTIVE_PTR` pointer. /// @dev Transforms `ACTIVE_PTR.offset` into `ACTIVE_PTR.offset + u32(_value)`. If overflow happens then it panics. function ptrAddIntoActive(uint32 _value) internal view { address callAddr = PTR_ADD_INTO_ACTIVE_CALL_ADDRESS; uint256 cleanupMask = UINT32_MASK; assembly { // Clearing input params as they are not cleaned by Solidity by default _value := and(_value, cleanupMask) pop(staticcall(_value, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice Compiler simulation of the `ptr.shrink` opcode for the virtual `ACTIVE_PTR` pointer. /// @dev Transforms `ACTIVE_PTR.length` into `ACTIVE_PTR.length - u32(_shrink)`. If underflow happens then it panics. function ptrShrinkIntoActive(uint32 _shrink) internal view { address callAddr = PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS; uint256 cleanupMask = UINT32_MASK; assembly { // Clearing input params as they are not cleaned by Solidity by default _shrink := and(_shrink, cleanupMask) pop(staticcall(_shrink, callAddr, 0, 0xFFFF, 0, 0)) } } /// @notice packs precompile parameters into one word /// @param _inputMemoryOffset The memory offset in 32-byte words for the input data for calling the precompile. /// @param _inputMemoryLength The length of the input data in words. /// @param _outputMemoryOffset The memory offset in 32-byte words for the output data. /// @param _outputMemoryLength The length of the output data in words. /// @param _perPrecompileInterpreted The constant, the meaning of which is defined separately for /// each precompile. For information, please read the documentation of the precompilecall log in /// the VM. function packPrecompileParams( uint32 _inputMemoryOffset, uint32 _inputMemoryLength, uint32 _outputMemoryOffset, uint32 _outputMemoryLength, uint64 _perPrecompileInterpreted ) internal pure returns (uint256 rawParams) { rawParams = _inputMemoryOffset; rawParams |= uint256(_inputMemoryLength) << 32; rawParams |= uint256(_outputMemoryOffset) << 64; rawParams |= uint256(_outputMemoryLength) << 96; rawParams |= uint256(_perPrecompileInterpreted) << 192; } /// @notice Call precompile with given parameters. /// @param _rawParams The packed precompile params. They can be retrieved by /// the `packPrecompileParams` method. /// @param _gasToBurn The number of gas to burn during this call. /// @return success Whether the call was successful. /// @dev The list of currently available precompiles sha256, keccak256, ecrecover. /// NOTE: The precompile type depends on `this` which calls precompile, which means that only /// system contracts corresponding to the list of precompiles above can do `precompileCall`. /// @dev If used not in the `sha256`, `keccak256` or `ecrecover` contracts, it will just burn the gas provided. function precompileCall(uint256 _rawParams, uint32 _gasToBurn) internal view returns (bool success) { address callAddr = PRECOMPILE_CALL_ADDRESS; // After `precompileCall` gas will be burned down to 0 if there are not enough of them, // thats why it should be checked before the call. require(gasleft() >= _gasToBurn); uint256 cleanupMask = UINT32_MASK; assembly { // Clearing input params as they are not cleaned by Solidity by default _gasToBurn := and(_gasToBurn, cleanupMask) success := staticcall(_rawParams, callAddr, _gasToBurn, 0xFFFF, 0, 0) } } /// @notice Set `msg.value` to next far call. /// @param _value The msg.value that will be used for the *next* call. /// @dev If called not in kernel mode, it will result in a revert (enforced by the VM) function setValueForNextFarCall(uint128 _value) internal returns (bool success) { uint256 cleanupMask = UINT128_MASK; address callAddr = SET_CONTEXT_VALUE_CALL_ADDRESS; assembly { // Clearing input params as they are not cleaned by Solidity by default _value := and(_value, cleanupMask) success := call(0, callAddr, _value, 0, 0xFFFF, 0, 0) } } /// @notice Initialize a new event. /// @param initializer The event initializing value. /// @param value1 The first topic or data chunk. function eventInitialize(uint256 initializer, uint256 value1) internal { address callAddr = EVENT_INITIALIZE_ADDRESS; assembly { pop(call(initializer, callAddr, value1, 0, 0xFFFF, 0, 0)) } } /// @notice Continue writing the previously initialized event. /// @param value1 The first topic or data chunk. /// @param value2 The second topic or data chunk. function eventWrite(uint256 value1, uint256 value2) internal { address callAddr = EVENT_WRITE_ADDRESS; assembly { pop(call(value1, callAddr, value2, 0, 0xFFFF, 0, 0)) } } /// @notice Get the packed representation of the `ZkSyncMeta` from the current context. /// @return meta The packed representation of the ZkSyncMeta. /// @dev The fields in ZkSyncMeta are NOT tightly packed, i.e. there is a special rule on how /// they are packed. For more information, please read the documentation on ZkSyncMeta. function getZkSyncMetaBytes() internal view returns (uint256 meta) { address callAddr = META_CALL_ADDRESS; assembly { meta := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Returns the bits [offset..offset+size-1] of the meta. /// @param meta Packed representation of the ZkSyncMeta. /// @param offset The offset of the bits. /// @param size The size of the extracted number in bits. /// @return result The extracted number. function extractNumberFromMeta(uint256 meta, uint256 offset, uint256 size) internal pure returns (uint256 result) { // Firstly, we delete all the bits after the field uint256 shifted = (meta << (256 - size - offset)); // Then we shift everything back result = (shifted >> (256 - size)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of gas /// that a single byte sent to L1 as pubdata costs. /// @param meta Packed representation of the ZkSyncMeta. /// @return gasPerPubdataByte The current price in gas per pubdata byte. function getGasPerPubdataByteFromMeta(uint256 meta) internal pure returns (uint32 gasPerPubdataByte) { gasPerPubdataByte = uint32(extractNumberFromMeta(meta, META_GAS_PER_PUBDATA_BYTE_OFFSET, 32)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size /// of the heap in bytes. /// @param meta Packed representation of the ZkSyncMeta. /// @return heapSize The size of the memory in bytes byte. /// @dev The following expression: getHeapSizeFromMeta(getZkSyncMetaBytes()) is /// equivalent to the MSIZE in Solidity. function getHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 heapSize) { heapSize = uint32(extractNumberFromMeta(meta, META_HEAP_SIZE_OFFSET, 32)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size /// of the auxilary heap in bytes. /// @param meta Packed representation of the ZkSyncMeta. /// @return auxHeapSize The size of the auxilary memory in bytes byte. /// @dev You can read more on auxilary memory in the VM1.2 documentation. function getAuxHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 auxHeapSize) { auxHeapSize = uint32(extractNumberFromMeta(meta, META_AUX_HEAP_SIZE_OFFSET, 32)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of `this`. /// @param meta Packed representation of the ZkSyncMeta. /// @return shardId The shardId of `this`. /// @dev Currently only shard 0 (zkRollup) is supported. function getShardIdFromMeta(uint256 meta) internal pure returns (uint8 shardId) { shardId = uint8(extractNumberFromMeta(meta, META_SHARD_ID_OFFSET, 8)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of /// the msg.sender. /// @param meta Packed representation of the ZkSyncMeta. /// @return callerShardId The shardId of the msg.sender. /// @dev Currently only shard 0 (zkRollup) is supported. function getCallerShardIdFromMeta(uint256 meta) internal pure returns (uint8 callerShardId) { callerShardId = uint8(extractNumberFromMeta(meta, META_CALLER_SHARD_ID_OFFSET, 8)); } /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of /// the currently executed code. /// @param meta Packed representation of the ZkSyncMeta. /// @return codeShardId The shardId of the currently executed code. /// @dev Currently only shard 0 (zkRollup) is supported. function getCodeShardIdFromMeta(uint256 meta) internal pure returns (uint8 codeShardId) { codeShardId = uint8(extractNumberFromMeta(meta, META_CODE_SHARD_ID_OFFSET, 8)); } /// @notice Retrieves the ZkSyncMeta structure. /// @return meta The ZkSyncMeta execution context parameters. function getZkSyncMeta() internal view returns (ZkSyncMeta memory meta) { uint256 metaPacked = getZkSyncMetaBytes(); meta.gasPerPubdataByte = getGasPerPubdataByteFromMeta(metaPacked); meta.shardId = getShardIdFromMeta(metaPacked); meta.callerShardId = getCallerShardIdFromMeta(metaPacked); meta.codeShardId = getCodeShardIdFromMeta(metaPacked); } /// @notice Returns the call flags for the current call. /// @return callFlags The bitmask of the callflags. /// @dev Call flags is the value of the first register /// at the start of the call. /// @dev The zero bit of the callFlags indicates whether the call is /// a constructor call. The first bit of the callFlags indicates whether /// the call is a system one. function getCallFlags() internal view returns (uint256 callFlags) { address callAddr = CALLFLAGS_CALL_ADDRESS; assembly { callFlags := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Returns the current calldata pointer. /// @return ptr The current calldata pointer. /// @dev NOTE: This file is just an integer and it can not be used /// to forward the calldata to the next calls in any way. function getCalldataPtr() internal view returns (uint256 ptr) { address callAddr = PTR_CALLDATA_CALL_ADDRESS; assembly { ptr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Returns the N-th extraAbiParam for the current call. /// @return extraAbiData The value of the N-th extraAbiParam for this call. /// @dev It is equal to the value of the (N+2)-th register /// at the start of the call. function getExtraAbiData(uint256 index) internal view returns (uint256 extraAbiData) { require(index < 10, "There are only 10 accessible registers"); address callAddr = GET_EXTRA_ABI_DATA_ADDRESS; assembly { extraAbiData := staticcall(index, callAddr, 0, 0xFFFF, 0, 0) } } /// @notice Retuns whether the current call is a system call. /// @return `true` or `false` based on whether the current call is a system call. function isSystemCall() internal view returns (bool) { uint256 callFlags = getCallFlags(); // When the system call is passed, the 2-bit it set to 1 return (callFlags & 2) != 0; } /// @notice Returns whether the address is a system contract. /// @param _address The address to test /// @return `true` or `false` based on whether the `_address` is a system contract. function isSystemContract(address _address) internal pure returns (bool) { return uint160(_address) <= uint160(MAX_SYSTEM_CONTRACT_ADDRESS); } } /// @dev Solidity does not allow exporting modifiers via libraries, so /// the only way to do reuse modifiers is to have a base contract abstract contract ISystemContract { /// @notice Modifier that makes sure that the method /// can only be called via a system call. modifier onlySystemCall() { require( SystemContractHelper.isSystemCall() || SystemContractHelper.isSystemContract(msg.sender), "This method require system call flag" ); _; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "./EfficientCall.sol"; /** * @author Matter Labs * @dev Common utilities used in zkSync system contracts */ library Utils { /// @dev Bit mask of bytecode hash "isConstructor" marker bytes32 constant IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK = 0x00ff000000000000000000000000000000000000000000000000000000000000; /// @dev Bit mask to set the "isConstructor" marker in the bytecode hash bytes32 constant SET_IS_CONSTRUCTOR_MARKER_BIT_MASK = 0x0001000000000000000000000000000000000000000000000000000000000000; function safeCastToU128(uint256 _x) internal pure returns (uint128) { require(_x <= type(uint128).max, "Overflow"); return uint128(_x); } function safeCastToU32(uint256 _x) internal pure returns (uint32) { require(_x <= type(uint32).max, "Overflow"); return uint32(_x); } function safeCastToU24(uint256 _x) internal pure returns (uint24) { require(_x <= type(uint24).max, "Overflow"); return uint24(_x); } /// @return codeLength The bytecode length in bytes function bytecodeLenInBytes(bytes32 _bytecodeHash) internal pure returns (uint256 codeLength) { codeLength = bytecodeLenInWords(_bytecodeHash) << 5; // _bytecodeHash * 32 } /// @return codeLengthInWords The bytecode length in machine words function bytecodeLenInWords(bytes32 _bytecodeHash) internal pure returns (uint256 codeLengthInWords) { unchecked { codeLengthInWords = uint256(uint8(_bytecodeHash[2])) * 256 + uint256(uint8(_bytecodeHash[3])); } } /// @notice Denotes whether bytecode hash corresponds to a contract that already constructed function isContractConstructed(bytes32 _bytecodeHash) internal pure returns (bool) { return _bytecodeHash[1] == 0x00; } /// @notice Denotes whether bytecode hash corresponds to a contract that is on constructor or has already been constructed function isContractConstructing(bytes32 _bytecodeHash) internal pure returns (bool) { return _bytecodeHash[1] == 0x01; } /// @notice Sets "isConstructor" flag to TRUE for the bytecode hash /// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag /// @return The bytecode hash with "isConstructor" flag set to TRUE function constructingBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) { // Clear the "isConstructor" marker and set it to 0x01. return constructedBytecodeHash(_bytecodeHash) | SET_IS_CONSTRUCTOR_MARKER_BIT_MASK; } /// @notice Sets "isConstructor" flag to FALSE for the bytecode hash /// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag /// @return The bytecode hash with "isConstructor" flag set to FALSE function constructedBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) { return _bytecodeHash & ~IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK; } /// @notice Validate the bytecode format and calculate its hash. /// @param _bytecode The bytecode to hash. /// @return hashedBytecode The 32-byte hash of the bytecode. /// Note: The function reverts the execution if the bytecode has non expected format: /// - Bytecode bytes length is not a multiple of 32 /// - Bytecode bytes length is not less than 2^21 bytes (2^16 words) /// - Bytecode words length is not odd function hashL2Bytecode(bytes calldata _bytecode) internal view returns (bytes32 hashedBytecode) { // Note that the length of the bytecode must be provided in 32-byte words. require(_bytecode.length % 32 == 0, "po"); uint256 bytecodeLenInWords = _bytecode.length / 32; require(bytecodeLenInWords < 2 ** 16, "pp"); // bytecode length must be less than 2^16 words require(bytecodeLenInWords % 2 == 1, "pr"); // bytecode length in words must be odd hashedBytecode = EfficientCall.sha(_bytecode) & 0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; // Setting the version of the hash hashedBytecode = (hashedBytecode | bytes32(uint256(1 << 248))); // Setting the length hashedBytecode = hashedBytecode | bytes32(bytecodeLenInWords << 224); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../libraries/TransactionHelper.sol"; interface IBootloaderUtilities { function getTransactionHashes( Transaction calldata _transaction ) external view returns (bytes32 txHash, bytes32 signedTxHash); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8; import {MSG_VALUE_SYSTEM_CONTRACT, MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT} from "../Constants.sol"; import "./Utils.sol"; // Addresses used for the compiler to be replaced with the // zkSync-specific opcodes during the compilation. // IMPORTANT: these are just compile-time constants and are used // only if used in-place by Yul optimizer. address constant TO_L1_CALL_ADDRESS = address((1 << 16) - 1); address constant CODE_ADDRESS_CALL_ADDRESS = address((1 << 16) - 2); address constant PRECOMPILE_CALL_ADDRESS = address((1 << 16) - 3); address constant META_CALL_ADDRESS = address((1 << 16) - 4); address constant MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 5); address constant SYSTEM_MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 6); address constant MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 7); address constant SYSTEM_MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 8); address constant RAW_FAR_CALL_CALL_ADDRESS = address((1 << 16) - 9); address constant RAW_FAR_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 10); address constant SYSTEM_CALL_CALL_ADDRESS = address((1 << 16) - 11); address constant SYSTEM_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 12); address constant SET_CONTEXT_VALUE_CALL_ADDRESS = address((1 << 16) - 13); address constant SET_PUBDATA_PRICE_CALL_ADDRESS = address((1 << 16) - 14); address constant INCREMENT_TX_COUNTER_CALL_ADDRESS = address((1 << 16) - 15); address constant PTR_CALLDATA_CALL_ADDRESS = address((1 << 16) - 16); address constant CALLFLAGS_CALL_ADDRESS = address((1 << 16) - 17); address constant PTR_RETURNDATA_CALL_ADDRESS = address((1 << 16) - 18); address constant EVENT_INITIALIZE_ADDRESS = address((1 << 16) - 19); address constant EVENT_WRITE_ADDRESS = address((1 << 16) - 20); address constant LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 21); address constant LOAD_LATEST_RETURNDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 22); address constant PTR_ADD_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 23); address constant PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 24); address constant PTR_PACK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 25); address constant MULTIPLICATION_HIGH_ADDRESS = address((1 << 16) - 26); address constant GET_EXTRA_ABI_DATA_ADDRESS = address((1 << 16) - 27); // All the offsets are in bits uint256 constant META_GAS_PER_PUBDATA_BYTE_OFFSET = 0 * 8; uint256 constant META_HEAP_SIZE_OFFSET = 8 * 8; uint256 constant META_AUX_HEAP_SIZE_OFFSET = 12 * 8; uint256 constant META_SHARD_ID_OFFSET = 28 * 8; uint256 constant META_CALLER_SHARD_ID_OFFSET = 29 * 8; uint256 constant META_CODE_SHARD_ID_OFFSET = 30 * 8; /// @notice The way to forward the calldata: /// - Use the current heap (i.e. the same as on EVM). /// - Use the auxiliary heap. /// - Forward via a pointer /// @dev Note, that currently, users do not have access to the auxiliary /// heap and so the only type of forwarding that will be used by the users /// are UseHeap and ForwardFatPointer for forwarding a slice of the current calldata /// to the next call. enum CalldataForwardingMode { UseHeap, ForwardFatPointer, UseAuxHeap } /** * @author Matter Labs * @notice A library that allows calling contracts with the `isSystem` flag. * @dev It is needed to call ContractDeployer and NonceHolder. */ library SystemContractsCaller { /// @notice Makes a call with the `isSystem` flag. /// @param gasLimit The gas limit for the call. /// @param to The address to call. /// @param value The value to pass with the transaction. /// @param data The calldata. /// @return success Whether the transaction has been successful. /// @dev Note, that the `isSystem` flag can only be set when calling system contracts. function systemCall(uint32 gasLimit, address to, uint256 value, bytes memory data) internal returns (bool success) { address callAddr = SYSTEM_CALL_CALL_ADDRESS; uint32 dataStart; assembly { dataStart := add(data, 0x20) } uint32 dataLength = uint32(Utils.safeCastToU32(data.length)); uint256 farCallAbi = SystemContractsCaller.getFarCallABI( 0, 0, dataStart, dataLength, gasLimit, // Only rollup is supported for now 0, CalldataForwardingMode.UseHeap, false, true ); if (value == 0) { // Doing the system call directly assembly { success := call(to, callAddr, 0, 0, farCallAbi, 0, 0) } } else { address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT; // We need to supply the mask to the MsgValueSimulator to denote // that the call should be a system one. uint256 forwardMask = MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT; assembly { success := call(msgValueSimulator, callAddr, value, to, farCallAbi, forwardMask, 0) } } } /// @notice Makes a call with the `isSystem` flag. /// @param gasLimit The gas limit for the call. /// @param to The address to call. /// @param value The value to pass with the transaction. /// @param data The calldata. /// @return success Whether the transaction has been successful. /// @return returnData The returndata of the transaction (revert reason in case the transaction has failed). /// @dev Note, that the `isSystem` flag can only be set when calling system contracts. function systemCallWithReturndata( uint32 gasLimit, address to, uint128 value, bytes memory data ) internal returns (bool success, bytes memory returnData) { success = systemCall(gasLimit, to, value, data); uint256 size; assembly { size := returndatasize() } returnData = new bytes(size); assembly { returndatacopy(add(returnData, 0x20), 0, size) } } /// @notice Makes a call with the `isSystem` flag. /// @param gasLimit The gas limit for the call. /// @param to The address to call. /// @param value The value to pass with the transaction. /// @param data The calldata. /// @return returnData The returndata of the transaction. In case the transaction reverts, the error /// bubbles up to the parent frame. /// @dev Note, that the `isSystem` flag can only be set when calling system contracts. function systemCallWithPropagatedRevert( uint32 gasLimit, address to, uint128 value, bytes memory data ) internal returns (bytes memory returnData) { bool success; (success, returnData) = systemCallWithReturndata(gasLimit, to, value, data); if (!success) { assembly { let size := mload(returnData) revert(add(returnData, 0x20), size) } } } /// @notice Calculates the packed representation of the FarCallABI. /// @param dataOffset Calldata offset in memory. Provide 0 unless using custom pointer. /// @param memoryPage Memory page to use. Provide 0 unless using custom pointer. /// @param dataStart The start of the calldata slice. Provide the offset in memory /// if not using custom pointer. /// @param dataLength The calldata length. Provide the length of the calldata in bytes /// unless using custom pointer. /// @param gasPassed The gas to pass with the call. /// @param shardId Of the account to call. Currently only 0 is supported. /// @param forwardingMode The forwarding mode to use: /// - provide CalldataForwardingMode.UseHeap when using your current memory /// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer. /// @param isConstructorCall Whether the call will be a call to the constructor /// (ignored when the caller is not a system contract). /// @param isSystemCall Whether the call will have the `isSystem` flag. /// @return farCallAbi The far call ABI. /// @dev The `FarCallABI` has the following structure: /// pub struct FarCallABI { /// pub memory_quasi_fat_pointer: FatPointer, /// pub gas_passed: u32, /// pub shard_id: u8, /// pub forwarding_mode: FarCallForwardPageType, /// pub constructor_call: bool, /// pub to_system: bool, /// } /// /// The FatPointer struct: /// /// pub struct FatPointer { /// pub offset: u32, // offset relative to `start` /// pub memory_page: u32, // memory page where slice is located /// pub start: u32, // absolute start of the slice /// pub length: u32, // length of the slice /// } /// /// @dev Note, that the actual layout is the following: /// /// [0..32) bits -- the calldata offset /// [32..64) bits -- the memory page to use. Can be left blank in most of the cases. /// [64..96) bits -- the absolute start of the slice /// [96..128) bits -- the length of the slice. /// [128..192) bits -- empty bits. /// [192..224) bits -- gasPassed. /// [224..232) bits -- forwarding_mode /// [232..240) bits -- shard id. /// [240..248) bits -- constructor call flag /// [248..256] bits -- system call flag function getFarCallABI( uint32 dataOffset, uint32 memoryPage, uint32 dataStart, uint32 dataLength, uint32 gasPassed, uint8 shardId, CalldataForwardingMode forwardingMode, bool isConstructorCall, bool isSystemCall ) internal pure returns (uint256 farCallAbi) { // Fill in the call parameter fields farCallAbi = getFarCallABIWithEmptyFatPointer( gasPassed, shardId, forwardingMode, isConstructorCall, isSystemCall ); // Fill in the fat pointer fields farCallAbi |= dataOffset; farCallAbi |= (uint256(memoryPage) << 32); farCallAbi |= (uint256(dataStart) << 64); farCallAbi |= (uint256(dataLength) << 96); } /// @notice Calculates the packed representation of the FarCallABI with zero fat pointer fields. /// @param gasPassed The gas to pass with the call. /// @param shardId Of the account to call. Currently only 0 is supported. /// @param forwardingMode The forwarding mode to use: /// - provide CalldataForwardingMode.UseHeap when using your current memory /// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer. /// @param isConstructorCall Whether the call will be a call to the constructor /// (ignored when the caller is not a system contract). /// @param isSystemCall Whether the call will have the `isSystem` flag. /// @return farCallAbiWithEmptyFatPtr The far call ABI with zero fat pointer fields. function getFarCallABIWithEmptyFatPointer( uint32 gasPassed, uint8 shardId, CalldataForwardingMode forwardingMode, bool isConstructorCall, bool isSystemCall ) internal pure returns (uint256 farCallAbiWithEmptyFatPtr) { farCallAbiWithEmptyFatPtr |= (uint256(gasPassed) << 192); farCallAbiWithEmptyFatPtr |= (uint256(forwardingMode) << 224); farCallAbiWithEmptyFatPtr |= (uint256(shardId) << 232); if (isConstructorCall) { farCallAbiWithEmptyFatPtr |= (1 << 240); } if (isSystemCall) { farCallAbiWithEmptyFatPtr |= (1 << 248); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
{ "evmVersion": "paris", "optimizer": { "enabled": true, "mode": "3" }, "outputSelection": { "*": { "*": [ "abi", "metadata" ], "": [ "ast" ] } }, "detectMissingLibraries": false, "forceEVMLA": false, "enableEraVMExtensions": true, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"_abstractPenguClaim","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"BootloaderCallFailed","type":"error"},{"inputs":[],"name":"MustBePenguClaim","type":"error"},{"inputs":[],"name":"MustCallClaim","type":"error"},{"inputs":[],"name":"OnlyBootloader","type":"error"},{"inputs":[],"name":"OnlyDeployer","type":"error"},{"inputs":[],"name":"WithdrawalFailed","type":"error"},{"inputs":[],"name":"ABSTRACT_PENGU_CLAIM","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"_context","type":"bytes"},{"components":[{"internalType":"uint256","name":"txType","type":"uint256"},{"internalType":"uint256","name":"from","type":"uint256"},{"internalType":"uint256","name":"to","type":"uint256"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"uint256","name":"gasPerPubdataByteLimit","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"uint256","name":"paymaster","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256[4]","name":"reserved","type":"uint256[4]"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"bytes32[]","name":"factoryDeps","type":"bytes32[]"},{"internalType":"bytes","name":"paymasterInput","type":"bytes"},{"internalType":"bytes","name":"reservedDynamic","type":"bytes"}],"internalType":"struct Transaction","name":"_transaction","type":"tuple"},{"internalType":"bytes32","name":"_txHash","type":"bytes32"},{"internalType":"bytes32","name":"_suggestedSignedHash","type":"bytes32"},{"internalType":"enum ExecutionResult","name":"_txResult","type":"uint8"},{"internalType":"uint256","name":"_maxRefundedGas","type":"uint256"}],"name":"postTransaction","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"bytes32","name":"","type":"bytes32"},{"components":[{"internalType":"uint256","name":"txType","type":"uint256"},{"internalType":"uint256","name":"from","type":"uint256"},{"internalType":"uint256","name":"to","type":"uint256"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"uint256","name":"gasPerPubdataByteLimit","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"uint256","name":"paymaster","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256[4]","name":"reserved","type":"uint256[4]"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"bytes32[]","name":"factoryDeps","type":"bytes32[]"},{"internalType":"bytes","name":"paymasterInput","type":"bytes"},{"internalType":"bytes","name":"reservedDynamic","type":"bytes"}],"internalType":"struct Transaction","name":"_transaction","type":"tuple"}],"name":"validateAndPayForPaymasterTransaction","outputs":[{"internalType":"bytes4","name":"magic","type":"bytes4"},{"internalType":"bytes","name":"context","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
9c4d535b0000000000000000000000000000000000000000000000000000000000000000010000a781682de227f9f34c8ef17b0ac150f4e7c20bd48d22be19fe41f6086f000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000200000000000000000000000005b3ef82eaed31cd13d79a5ed0586424d70b330d2
Deployed Bytecode
0x000400000000000200040000000000020000006004100270000000810340019700030000003103550002000000010355000000810040019d0000000100200190000000420000c13d0000008002000039000000400020043f000000040030008c000000720000413d000000000201043b000000e002200270000000860020009c000000760000213d000000890020009c0000009a0000613d0000008a0020009c000001670000c13d0000000001000416000000000001004b000001670000c13d0000008d01000041000000000010044300000000010004120000000400100443000000200100003900000024001004430000000001000414000000810010009c0000008101008041000000c0011002100000008f011001c70000800502000039020001fb0000040f0000000100200190000001690000613d000000000301043b00000084013001970000000002000411000000000012004b0000016a0000c13d000200000003001d00000092010000410000000000100443000000000100041000000004001004430000000001000414000000810010009c0000008101008041000000c00110021000000093011001c70000800a02000039020001fb0000040f0000000100200190000001690000613d000000000301043b00000000010004140000000204000029000000040040008c000001760000c13d00000001020000390000000101000031000001880000013d0000000002000416000000000002004b000001670000c13d0000001f023000390000008202200197000000c002200039000000400020043f0000001f0430018f0000008305300198000000c002500039000000530000613d000000c006000039000000000701034f000000007807043c0000000006860436000000000026004b0000004f0000c13d000000000004004b000000600000613d000000000151034f0000000304400210000000000502043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f0000000000120435000000200030008c000001670000413d000000c00100043d000000840010009c000001670000213d000000800010043f0000000002000411000000a00020043f0000014000000443000001600010044300000020010000390000018000100443000001a0002004430000010000100443000000020100003900000120001004430000008501000041000002010001042e000000000003004b000001670000c13d0000000001000019000002010001042e000000870020009c000001560000613d000000880020009c000001670000c13d000000c40030008c000001670000413d0000000402100370000000000202043b0000008b0020009c000001670000213d0000002304200039000000000034004b000001670000813d0000000404200039000000000441034f000000000404043b0000008b0040009c000001670000213d00000000024200190000002402200039000000000032004b000001670000213d0000002402100370000000000202043b0000008b0020009c000001670000213d00000000022300490000008c0020009c000001670000213d000002640020008c000001670000413d0000008401100370000000000101043b000000010010008c000000740000a13d000001670000013d000000640030008c000001670000413d0000004401100370000000000201043b0000008b0020009c000001670000213d00000000032300490000008c0030009c000001670000213d000002640030008c000001670000413d0000000001000411000080010010008c000001720000c13d000100000003001d000200000002001d0000008d0100004100000000001004430000000001000412000000040010044300000024000004430000000001000414000000810010009c0000008101008041000000c0011002100000008f011001c70000800502000039020001fb0000040f0000000100200190000001690000613d000000020800002900000044038000390000000202000367000000000432034f000000000404043b000000000101043b000000000114013f00000084001001980000017d0000c13d0000018001300039000000000312034f000000000303043b0000000104000029000000230440008a00000099053001970000009906400197000000000765013f000000000065004b00000000050000190000009905004041000000000043004b00000000040000190000009904008041000000990070009c000000000504c019000000000005004b000001670000c13d00000000048300190000000403400039000000000532034f000000000505043b0000008b0050009c000001670000213d000000040050008c000001670000413d00000000055000790000002404400039000000000054004b0000000006000019000000990600204100000099055001970000009904400197000000000754013f000000000054004b00000000040000190000009904004041000000990070009c000000000406c019000000000004004b000001670000c13d0000002003300039000000000332034f000000400400043d000000000303043b0000009a033001970000009b0030009c000001be0000c13d000200000004001d0000009d0040009c000001910000813d00000002040000290000002003400039000100000003001d000000400030043f0000000000040435000001600310008a000000000332034f000001200110008a000000000112034f000000000101043b000000000203043b000000000002004b000001c50000c13d0000000001000414000000810010009c0000008101008041000000c0011002100000800102000039020001f60000040f00030000000103550000006003100270000100810030019d0000008103300198000001310000613d0000001f0430003900000082044001970000003f04400039000000a004400197000000400500043d0000000004450019000000000054004b000000000600003900000001060040390000008b0040009c000001910000213d0000000100600190000001910000c13d000000400040043f0000001f0430018f000000000635043600000083053001980000000003560019000001240000613d000000000701034f000000007807043c0000000006860436000000000036004b000001200000c13d000000000004004b000001310000613d000000000151034f0000000304400210000000000503043300000000054501cf000000000545022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000151019f0000000000130435000000400100043d0000000100200190000001d40000613d000000200210003900000040030000390000000000320435000000a202000041000000000021043500000002020000290000000002020433000000400310003900000000002304350000006003100039000000000002004b0000000107000029000001490000613d000000000400001900000000053400190000000006740019000000000606043300000000006504350000002004400039000000000024004b000001420000413d0000001f04200039000000a304400197000000000232001900000000000204350000006002400039000000810020009c00000081020080410000006002200210000000810010009c00000081010080410000004001100210000000000112019f000002010001042e0000000001000416000000000001004b000001670000c13d0000000001000412000400000001001d000300000000003d000080050100003900000044030000390000000004000415000000040440008a00000005044002100000008d02000041020001dd0000040f0000008401100197000000800010043f0000008e01000041000002010001042e00000000010000190000020200010430000000000001042f000000400100043d00000090020000410000000000210435000000810010009c0000008101008041000000400110021000000091011001c700000202000104300000009601000041000000800010043f00000097010000410000020200010430000000810010009c0000008101008041000000c001100210000000000003004b000001800000c13d0000000002040019000001830000013d000000400100043d00000098020000410000016c0000013d00000094011001c700008009020000390000000005000019020001f60000040f00030000000103550000006001100270000100810010019d0000008101100197000000000001004b0000018f0000c13d0000000100200190000000740000c13d000000400100043d00000095020000410000016c0000013d0000008b0010009c000001970000a13d0000009e01000041000000000010043f0000004101000039000000040010043f0000009f0100004100000202000104300000001f04100039000000a3044001970000003f04400039000000a305400197000000400400043d0000000005540019000000000045004b000000000600003900000001060040390000008b0050009c000001910000213d0000000100600190000001910000c13d000000400050043f0000000006140436000000a3031001980000001f0410018f00000000013600190000000305000367000001b00000613d000000000705034f000000007807043c0000000006860436000000000016004b000001ac0000c13d000000000004004b0000018a0000613d000000000335034f0000000304400210000000000501043300000000054501cf000000000545022f000000000303043b0000010004400089000000000343022f00000000034301cf000000000353019f00000000003104350000018a0000013d0000009c010000410000000000140435000000810040009c0000008104008041000000400140021000000091011001c7000002020001043000000000032100a900000000022300d9000000000021004b000001d60000c13d0000000001000414000000000003004b000001020000613d000000810010009c0000008101008041000000c00110021000000094011001c7000080090200003900008001040000390000000005000019000001060000013d000000a1020000410000016c0000013d0000009e01000041000000000010043f0000001101000039000000040010043f0000009f010000410000020200010430000000000001042f00000000050100190000000000200443000000040100003900000005024002700000000002020031000000000121043a0000002004400039000000000031004b000001e00000413d000000810030009c000000810300804100000060013002100000000002000414000000810020009c0000008102008041000000c002200210000000000112019f000000a4011001c70000000002050019020001fb0000040f0000000100200190000001f50000613d000000000101043b000000000001042d000000000001042f000001f9002104210000000102000039000000000001042d0000000002000019000000000001042d000001fe002104230000000102000039000000000001042d0000000002000019000000000001042d0000020000000432000002010001042e0000020200010430000000000000000000000000000000000000000000000000000000000000000000000000ffffffff00000000000000000000000000000000000000000000000000000001ffffffe000000000000000000000000000000000000000000000000000000000ffffffe0000000000000000000000000ffffffffffffffffffffffffffffffffffffffff00000002000000000000000000000000000000c00000010000000000000000000000000000000000000000000000000000000000000000000000000076909e750000000000000000000000000000000000000000000000000000000076909e7600000000000000000000000000000000000000000000000000000000817b17f000000000000000000000000000000000000000000000000000000000038a24bc000000000000000000000000000000000000000000000000000000003ccfd60b000000000000000000000000000000000000000000000000ffffffffffffffff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff310ab089e4439a4c15d089f94afb7896ff553aecb10793d0ab882de59d99a32e00000000000000000000000000000000000000200000008000000000000000000200000200000000000000000000000000000044000000000000000000000000618bbdd50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000040000000000000000000000009cc7f708afc65944829bd487b90b72536b1951864fbfc14e125fc972a6507f390200000200000000000000000000000000000024000000000000000000000000020000000000000000000000000000000000000000000000000000000000000027fcd9d100000000000000000000000000000000000000000000000000000000e38026aa000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004000000800000000000000000e52dfef3000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000ffffffff000000000000000000000000000000000000000000000000000000005eddd15700000000000000000000000000000000000000000000000000000000b06b643600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffe04e487b7100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002400000000000000000000000000000000000000000000000000000000000000000000000000000003ffffffe0a7c8bdd300000000000000000000000000000000000000000000000000000000038a24bc00000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0020000020000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005b4a84bc5740e23fc70b8743ce71201d62d0b96a39016064abe44456866a01cf
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000005b3ef82eaed31cd13d79a5ed0586424d70b330d2
-----Decoded View---------------
Arg [0] : _abstractPenguClaim (address): 0x5B3EF82Eaed31Cd13d79A5ed0586424d70b330D2
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000005b3ef82eaed31cd13d79a5ed0586424d70b330d2
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.